Publications by authors named "Laikun Xia"

Introduction: High rainfall and excessive urea application are counterproductive to summer maize growth requirements and lower grain yield and water/nitrogen (N) use efficiency. The objective of this study was to determine whether ETc irrigation based on summer maize demand and reduced nitrogen rate in the Huang Huai Hai Plain increased water and nitrogen use efficiency without sacrificing yield.

Methods: To achieve this, we conducted an experiment with four irrigation levels [ambient rainfall (I0) and 50% (I1), 75% (I2), and 100% (I3) of actual crop evapotranspiration (ET)] and four nitrogen rates [no nitrogen fertilizer (N0), recommended nitrogen rate of urea (NU), recommended nitrogen rate of blending controlled-release urea with conventional urea fertilizer (BCRF) (NC), and reduced nitrogen rate of BCRF (NR)] in 2016-2018.

View Article and Find Full Text PDF

Heterosis, known as one of the most successful strategies for increasing grain yield and abiotic/biotic stress tolerance, has been widely exploited in maize breeding. However, the underlying molecular processes are still to be elucidated. The maize hybrid "Zhengdan538" shows high tolerance to drought stress.

View Article and Find Full Text PDF

The maize (Zea mays L.) husk consists of multiple leaf layers and plays an important role in grain growth and development. Despite significant achievements in physiological and morphological research, few studies have focused on the detection of genetic loci underlying husk-related traits due to the lack of efficient tools.

View Article and Find Full Text PDF

Drought is one of the main abiotic stresses adversely affecting maize growth and grain yield. Identifying drought tolerance-related genes and breeding varieties with enhanced tolerance are effective strategies for minimizing the effects of drought stress. In this study, the leaf relative water content (LRWC) was used for evaluating drought tolerance.

View Article and Find Full Text PDF

During 2017 to 2019, a field survey for maize stalk rot was conducted in 21 counties (districts) across the Guangxi province of China. This disease caused yield losses ranging from 20% to 30%. Maize plants with stalk rot were collected during the late milk stage and pieces of diseased pith tissue were cultured as previously described (Shan et al.

View Article and Find Full Text PDF
Article Synopsis
  • Maize is the most extensively cultivated crop in China, covering 41.28 million hectares in 2019, and suffers significant yield losses (10%-20%) due to stalk rot, a major fungal disease.
  • A survey conducted from 2017 to 2019 in Henan province identified stalk rot in maize fields, with disease incidences exceeding 25% in certain areas, particularly Xuchang city.
  • Fungal isolates were cultured and analyzed for morphological characteristics, revealing specific features like colony appearance and spore structure that matched known species descriptions and utilized molecular techniques for further phylogenetic studies.
View Article and Find Full Text PDF

Maize (Zea mays L.) grain moisture (GM) at harvest is an important trait that affects seed preservation during storage, grain quality and artificial drying costs. To date, most of the work on understanding GM dynamics in maize has focused on the grain filling period, while the period of postmaturity grain drying remains unexplored.

View Article and Find Full Text PDF