Weak magnetic field (WMF) has been recognized to promote biological denitrification processes; however, the underlying mechanisms remain largely unexplored, hindering the optimization of its effectiveness. Here, we systematically investigated the effects of WMF on denitrification performance, enzyme activity, microbial community, and metaproteome in packed bed bioreactors treating high nitrate wastewater under different WMF intensities and C:N ratios. Results showed that WMFs significantly promoted denitrification by consistently stimulating the activities of denitrifying reductases and NAD/NADH biosynthesis across decreasing C:N ratios.
View Article and Find Full Text PDFBiochemical tailwater of the industrial park wastewater treatment plant is facing the growing demand of advanced treatment and toxicity reduction. However, existing information on toxicity reduction of real industrial biochemical tailwater is still limited so far. Herein, the water quality of biochemical tailwater from an integrated industrial park in Taihu Lake Basin, China, was systematically investigated, and typical endocrine disrupting chemicals (EDCs) and estrogen toxicity were detected.
View Article and Find Full Text PDFIn order to reveal the status and trends of chemical treatment for wastewater, the patents analysis from both structured and unstructured data was performed in this study. 35,838 patents recorded in the Derwent Innovation Index database were adopted. The results showed that China was the country with the largest number of patents in the field, and the United States was the main exporter of international technology flows.
View Article and Find Full Text PDFThe concern about wastewater effluent toxicity has motivated the innovation of enhancement technologies on sulfur-based denitrification biofilter in recent years. Electrolysis is a common technology to reduce or remove toxic pollutants. However, the effect of electrolysis on simultaneous total nitrogen (TN) removal and toxicity reduction in sulfur-based denitrification biofilter has not been reported yet.
View Article and Find Full Text PDFElectrochemical reduction is currently one of promising methods for nitrate removal from water, yet most treatment approaches have problems of high cost and energy consumption. In this work, a low current density was applied in electrochemical reduction of nitrate. Copper-modified titanium (Cu/Ti) electrodes with optimal electrochemical activity and fastest kinetics were firstly screened.
View Article and Find Full Text PDF