Publications by authors named "Laibe C"

BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.

View Article and Find Full Text PDF

In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration.

View Article and Find Full Text PDF

Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the progressive dysfunction and loss of neurons. Here, we distil and discuss the current state of modeling in the area of neurodegeneration, and objectively compare the gaps between existing clinical knowledge and the mechanistic understanding of the major pathological processes implicated in neurodegenerative disorders. We also discuss new directions in the field of neurodegeneration that hold potential for furthering therapeutic interventions and strategies.

View Article and Find Full Text PDF

Access to consistent, high-quality metadata is critical to finding, understanding, and reusing scientific data. However, while there are many relevant vocabularies for the annotation of a dataset, none sufficiently captures all the necessary metadata. This prevents uniform indexing and querying of dataset repositories.

View Article and Find Full Text PDF

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information.

View Article and Find Full Text PDF

The lack of a common exchange format for mathematical models in pharmacometrics has been a long-standing problem. Such a format has the potential to increase productivity and analysis quality, simplify the handling of complex workflows, ensure reproducibility of research, and facilitate the reuse of existing model resources. Pharmacometrics Markup Language (PharmML), currently under development by the Drug Disease Model Resources (DDMoRe) consortium, is intended to become an exchange standard in pharmacometrics by providing means to encode models, trial designs, and modeling steps.

View Article and Find Full Text PDF

BioModels is a reference repository hosting mathematical models that describe the dynamic interactions of biological components at various scales. The resource provides access to over 1,200 models described in literature and over 140,000 models automatically generated from pathway resources. Most model components are cross-linked with external resources to facilitate interoperability.

View Article and Find Full Text PDF

Motivation: On the semantic web, in life sciences in particular, data is often distributed via multiple resources. Each of these sources is likely to use their own International Resource Identifier for conceptually the same resource or database record. The lack of correspondence between identifiers introduces a barrier when executing federated SPARQL queries across life science data.

View Article and Find Full Text PDF

Background: With the ever increasing use of computational models in the biosciences, the need to share models and reproduce the results of published studies efficiently and easily is becoming more important. To this end, various standards have been proposed that can be used to describe models, simulations, data or other essential information in a consistent fashion. These constitute various separate components required to reproduce a given published scientific result.

View Article and Find Full Text PDF

Background: BioModels Database is a reference repository of mathematical models used in biology. Models are stored as SBML files on a file system and metadata is provided in a relational database. Models can be retrieved through a web interface and programmatically via web services.

View Article and Find Full Text PDF

The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data.

View Article and Find Full Text PDF

Resource description framework (RDF) is an emerging technology for describing, publishing and linking life science data. As a major provider of bioinformatics data and services, the European Bioinformatics Institute (EBI) is committed to making data readily accessible to the community in ways that meet existing demand. The EBI RDF platform has been developed to meet an increasing demand to coordinate RDF activities across the institute and provides a new entry point to querying and exploring integrated resources available at the EBI.

View Article and Find Full Text PDF

Background: Systems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data.

Results: To increase the efficiency of model creation, the Path2Models project has automatically generated mathematical models from pathway representations using a suite of freely available software.

View Article and Find Full Text PDF

Diabetes is a chronic and complex multifactorial disease caused by persistent hyperglycemia and for which underlying pathogenesis is still not completely understood. The mathematical modeling of glucose homeostasis, diabetic condition, and its associated complications is rapidly growing and provides new insights into the underlying mechanisms involved. Here, we discuss contributions to the diabetes modeling field over the past five decades, highlighting the areas where more focused research is required.

View Article and Find Full Text PDF

The aim of this chapter is to provide sufficient information to enable a reader, new to the subject of Systems Biology, to create and use effectively controlled annotations, using resolvable Identifiers.org Uniform Resource Identifiers (URIs). The text details the underlying requirements that have led to the development of such an identification scheme and infrastructure, the principles that underpin its syntax and the benefits derived through its use.

View Article and Find Full Text PDF

BioModels Database is a public online resource that allows storing and sharing of published, peer-reviewed quantitative, dynamic models of biological processes. The model components and behaviour are thoroughly checked to correspond the original publication and manually curated to ensure reliability. Furthermore, the model elements are annotated with terms from controlled vocabularies as well as linked to relevant external data resources.

View Article and Find Full Text PDF

Background: The Kinetic Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the simulation of Systems Biology models, their characteristics, parameters and inter-relationships. KiSAO enables the unambiguous identification of algorithms from simulation descriptions. Information about analogous methods having similar characteristics and about algorithm parameters incorporated into KiSAO is desirable for simulation tools.

View Article and Find Full Text PDF

The Minimum Information Required in the Annotation of Models Registry (http://www.ebi.ac.

View Article and Find Full Text PDF

The use of computational modeling to describe and analyze biological systems is at the heart of systems biology. Model structures, simulation descriptions and numerical results can be encoded in structured formats, but there is an increasing need to provide an additional semantic layer. Semantic information adds meaning to components of structured descriptions to help identify and interpret them unambiguously.

View Article and Find Full Text PDF

Background: Quantitative models of biochemical and cellular systems are used to answer a variety of questions in the biological sciences. The number of published quantitative models is growing steadily thanks to increasing interest in the use of models as well as the development of improved software systems and the availability of better, cheaper computer hardware. To maximise the benefits of this growing body of models, the field needs centralised model repositories that will encourage, facilitate and promote model dissemination and reuse.

View Article and Find Full Text PDF

Exchanging and sharing scientific results are essential for researchers in the field of computational modelling. BioModels.net defines agreed-upon standards for model curation.

View Article and Find Full Text PDF

A key component of any synthetic biology effort is the use of quantitative models. These models and their corresponding simulations allow optimization of a system design, as well as guiding their subsequent analysis. Once a domain mostly reserved for experts, dynamical modelling of gene regulatory and reaction networks has been an area of growth over the last decade.

View Article and Find Full Text PDF