Publications by authors named "Laia Sitja-Roqueta"

Article Synopsis
  • The study investigates the role of specific striatal circuits in motor control and behavior in both healthy and Huntington's Disease (HD) mice, focusing on the direct and indirect pathways from the dorsolateral (DLS) and dorsomedial striatum (DMS).
  • Optogenetic stimulation of these pathways in wild type mice showed slight improvements in locomotion and motor learning but did not affect exploratory behavior.
  • In contrast, the same stimulation in HD mice did not produce any behavioral changes, suggesting that targeting cortico-striatal circuits may be a more effective approach for treating motor symptoms in HD rather than focusing solely on striatal output pathways.
View Article and Find Full Text PDF
Article Synopsis
  • Extracellular vesicles (EVs) are tiny bubbles that help brain cells communicate by carrying important signals like proteins and lipids.
  • Researchers found that these EVs can be taken up by neurons in different parts of the cell and they help grow connections between brain cells.
  • The study suggests that EVs could be helpful in improving brain cell health and might be used to treat diseases that damage the brain.
View Article and Find Full Text PDF

Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue.

View Article and Find Full Text PDF

Early and progressive cortico-striatal circuit alterations have been widely characterized in Huntington's disease (HD) patients. Cortical premotor area, M2 cortex in rodents, is the most affected cortical input to the striatum from early stages in patients and is associated to the motor learning deficits present in HD mice. Yet, M2 cortex sends additional long-range axon collaterals to diverse output brain regions beyond basal ganglia.

View Article and Find Full Text PDF

The consequences of extremely intense long-term exercise for brain health remain unknown. We studied the effects of strenuous exercise on brain structure and function, its dose-response relationship, and mechanisms in a rat model of endurance training. Five-week-old male Wistar rats were assigned to moderate (MOD) or intense (INT) exercise or a sedentary (SED) group for 16 weeks.

View Article and Find Full Text PDF