Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine.
View Article and Find Full Text PDFHuman tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer.
View Article and Find Full Text PDFTime-lapse monitoring of somatic cell nuclear transfer (SCNT) embryos may help to predict developmental success and increase birth and embryonic stem cells (ESC) derivation rates. Here, the development of ICSI fertilized embryos and of SCNT embryos, non-treated or treated with either psammaplin A (PsA) or vitamin C (VitC), was monitored, and the ESC derivation rates from the resulting blastocysts were determined. Blastocyst rates were similar among PsA-treated and VitC-treated SCNT embryos and ICSI embryos, but lower for non-treated SCNT embryos.
View Article and Find Full Text PDF