As the clinically used artemisinins do not withstand the thermal stress testing required to evaluate shelf life for storage in tropical countries where malaria is prevalent, there is a need to develop thermally more robust artemisinin derivatives. Herein we describe the attachment of electron-withdrawing arene- and alkanesulfonyl and -carbonyl groups to the nitrogen atom of the readily accessible Ziffer 11-azaartemisinin to provide the corresponding N-sulfonyl- and -carbonylazaartemisinins. Two acylurea analogues were also prepared by treatment of the 11-azaartemisinin with arylisocyanates.
View Article and Find Full Text PDFArtesunate drug substance, for which a rectal capsule formulation is under development for the treatment of severe malaria, when heated at 100 degrees C for 39 h gives beta-artesunate, artesunate dimers, 9,10-anhydrodihydroartemisinin (glycal), a DHA beta-formate ester, and smaller amounts of other products that arise via intermediate formation of dihydroartemisinin (DHA) and subsequent thermal degradation. Solid DHA at 100 degrees C provides an epimeric mixture of a known peroxyhemiacetal, arising via ring opening to a hydroperoxide and re-closure, smaller amounts of a 3:1 mixture of epimers of a known tricarbonyl compound, and a single epimer of a new dicarbonyl compound. The latter arises via homolysis of the peroxide and an ensuing cascade of alpha-cleavage reactions which leads to loss of formic acid incorporating the C10 carbonyl group of DHA exposed by this 'unzipping' cascade.
View Article and Find Full Text PDFThe reactivities of benzynes and metal-carbyne complexes are normally associated with the triple bond units. However, we have now found that electrophiles do not attack the formal osmium-carbon triple bond of osmabenzyne complex 1. Instead, 1 undergoes electrophilic substitution reactions-the typical reactions of aromatic systems.
View Article and Find Full Text PDF