In Parkinson's disease and other synucleinopathies, the elevation of α-synuclein phosphorylated at Serine129 (pS129) is a widely cited marker of pathology. However, the physiological role for pS129 has remained undefined. Here we use multiple approaches to show for the first time that pS129 functions as a physiological regulator of neuronal activity.
View Article and Find Full Text PDFBackground: Endothelial cell injury is a common nidus of renal injury in patients and consistent with the high prevalence of AKI reported during the coronavirus disease 2019 pandemic. This cell type expresses integrin 5 (ITGA5), which is essential to the Tie2 signaling pathway. The microRNA miR-218-5p is upregulated in endothelial progenitor cells (EPCs) after hypoxia, but microRNA regulation of Tie2 in the EPC lineage is unclear.
View Article and Find Full Text PDFOCT4 and SOX2 confer pluripotency by recruiting coactivators to activate stem cell–specific transcription. However, the composition of coactivator complexes and their roles in maintaining stem cell fidelity remain unclear. Here, we report the ATP-binding cassette subfamily F member 1 (ABCF1) as a coactivator for OCT4/SOX2 critical for stem cell self-renewal.
View Article and Find Full Text PDFBackground: Genetic mutations in -actinin-4 (ACTN4)-an important actin crosslinking cytoskeletal protein that provides structural support for kidney podocytes-have been linked to proteinuric glomerulosclerosis in humans. However, the effect of post-translational modifications of ACTN4 on podocyte integrity and kidney function is not known.
Methods: Using mass spectrometry, we found that ACTN4 is phosphorylated at serine (S) 159 in human podocytes.
Neurodegenerative diseases are an enormous public health problem, affecting tens of millions of people worldwide. Nearly all of these diseases are characterized by oligomerization and fibrillization of neuronal proteins, and there is great interest in therapeutic targeting of these aggregates. Here, we show that soluble aggregates of α-synuclein and tau bind to plate-immobilized PrP in vitro and on mouse cortical neurons, and that this binding requires at least one of the same N-terminal sites at which soluble Aβ aggregates bind.
View Article and Find Full Text PDFCytomegalovirus (CMV) has been implicated in glioblastoma (GBM); however, a mechanistic connection in vivo has not been established. The purpose of this study is to characterize the effects of murine CMV (MCMV) on GBM growth in murine models. Syngeneic GBM models were established in mice perinatally infected with MCMV.
View Article and Find Full Text PDFPhysiol Genomics
February 2015
Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood.
View Article and Find Full Text PDFType 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome.
View Article and Find Full Text PDFGamma-aminobutyric acid neurons, born in remote germinative zones in the ventral forebrain (telencephalon), migrate tangentially in two spatially distinct streams to adopt their specific positions in the developing cortex. The cell types and molecular cues that regulate this divided migratory route remains to be elucidated. Here we show that embryonic vascular networks are strategically positioned to fulfil the task of providing support as well as critical guidance cues that regulate the divided migratory routes of gamma-aminobutyric acid neurons in the telencephalon.
View Article and Find Full Text PDFBackground: Store-operated Ca(2+) entry is important for cell migration.
Results: This study presents characterization of localization and roles of Orai1, STIM1, and PLA2g6 in adhesion dynamics during cell migration.
Conclusion: Orai1 and PLA2g6 are involved in adhesion formation at the front, whereas STIM1 participates in both adhesion formation and disassembly.
The recent discovery of a distorted hexagonal phase in 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine/1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPE/DOPC) mixtures raised the intriguing question as to whether lipid mixtures demix in a bent monolayer. We performed neutron diffraction on a mixture of headgroup deuterated DOPC-d(13) and nondeuterated DOPE to study the lipid distribution in the distorted hexagonal phase. The 1:1 lipid mixture in full hydration and 25 degrees C was in a homogeneous lamellar phase.
View Article and Find Full Text PDFA neutron diffraction method applicable to nonlamellar phases of substrate-supported lipid membranes is described and validated. When prepared on a flat substrate, the resulting nonlamellar phases have layered symmetry which provides some advantages over powder diffraction for detailed structure determination. This approach recently led to the detection of a rhombohedral phase and a distorted hexagonal phase of lipids.
View Article and Find Full Text PDFWe study the interaction of antimicrobial peptides with lipopolysaccharide (LPS) bilayers to understand how antimicrobial peptides interact with the LPS monolayer on the outer membrane of Gram-negative bacteria. LPS in water spontaneously forms a multilamellar structure composed of symmetric bilayers. We performed X-ray lamellar diffraction and wide-angle in-plane scattering to study the physical characteristics of LPS multilayers.
View Article and Find Full Text PDFMembrane fusion is a ubiquitous process in eukaryotic cells. When two membranes fuse, lipid must undergo molecular rearrangements at the point of merging. To understand how lipid structure transitions occur, scientists studied the phase transition of lipid between the lamellar (L(alpha)) phase and the inverted hexagonal (H(II)) phase, based on the idea that lipid must undergo a similar rearrangement as in fusion.
View Article and Find Full Text PDFRTD-1 is a recently discovered cyclic peptide that, like other well-studied antimicrobial peptides, appears to bind to the lipid matrix of cell membrane in the initial stage of activity. We studied the states of RTD-1 bound to lipid bilayers by two methods: oriented circular dichroism and X-ray diffraction. RTD-1 shows two physically distinct bound states in lipid bilayers like magainins, protegrins, alamethicin, and melittin that were previously studied.
View Article and Find Full Text PDF