The global shift towards renewable energy sources highlights the urgent need for sustainable hydrogen production, with photo-fermentative hydrogen evolution (PFHP) emerging as a promising solution. This review addresses the challenges and opportunities in optimizing PFHP, specifically the role of photosynthetic bacteria (PBS) in utilizing sunlight for hydrogen production. We focus on the key factors influencing PFHP, including light intensity, reactor design, substrate selection, carbon-to-nitrogen ratio, metal ions, temperature, pH, charge transfer and genetic engineering.
View Article and Find Full Text PDFIndustrial organic dyes represent a significant portion of pollutants discharged into the environment, particularly by the textile industry. These compounds pose serious threats to living organisms due to their high toxicity. Various techniques have been explored for the degradation of organic dyes, among which heterogeneous photocatalysis utilising titanium dioxide (TiO) stands out as a promising technology.
View Article and Find Full Text PDFGlobal groundwater contamination by Arsenic (As) presents a grave danger to the health of living beings and wildlife, demanding comprehensive remediation strategies. This review delves into the complex landscape of arsenic remediation, encompassing its chemical forms, occurrences, sources, and associated health risks. Advanced techniques, notably biomass-derived adsorbents, emerge as promising and cost-effective solutions.
View Article and Find Full Text PDFCellulose nanofibers (CNF) create a physical barrier preventing contact with corrosive substances and improving corrosion prevention. Oil palm fronds (OPF), the primary source of underused biomass waste from plantations, were processed into CNF. The OPF-CNF, mixed with hydroxyethyl cellulose as the matrix, forms a nanocomposite.
View Article and Find Full Text PDFThis paper presents the synthesis of visible light-responsive ternary nanocomposites composed of cuprous oxide (CuO), tungsten trioxide (WO), and titanium dioxide (TiO) with varying weight percentages (wt.%) of the CuO. The resulting CuO/WO/TiO (CWT) nanocomposites exhibited band gap energy ranging from 2.
View Article and Find Full Text PDFElectrodeposition of abundant metals to fabricate efficient and durable electrodes indicate a viable role in advancing renewable electrochemical energy tools. Herein, we deposit CoS-Ag-NiS@NF on nickel foam (NF) to produce CoS-Ag-NiS@NF as a exceedingly proficient electrode for oxygen evolution reaction (OER). The electrochemical investigation verifies that the CoS-Ag-NiS@NF electrode reveals better electrocatalytic activity to OER because of its nanoflowers' open-pore morphology, reduced overpotential (η=125 mV), smaller charge transfer resistance, long-term stability, and a synergistic effect between various components, which allows the reactants to be more easily absorbed and subsequently converted into gaseous products during the water electrolysis route.
View Article and Find Full Text PDFEarly detection and effective cancer treatment are critical to improving metastatic cancer cell diagnosis and management today. In particular, accurate qualitative diagnosis of metastatic cancer cell represents an important step in the diagnosis of cancer. Today, biosensors have been widely developed due to the daily need to measure different chemical and biological species.
View Article and Find Full Text PDFRhodanine is a heterocyclic organic compound that has been investigated for its potential biomedical applications, particularly in drug discovery. Rhodanine derivatives have been examined as the medication options for numerous illnesses, including cancer, inflammation, and infectious diseases. Some rhodanine derivatives have also shown promising activity against drug-resistant strains of bacteria and viruses.
View Article and Find Full Text PDFIn pursuit of advancing photocatalysts for superior performance in water treatment and clean energy generation, researchers are increasingly focusing on layered double hydroxides (LDHs) which have garnered significant attention due to their customizable properties, morphologies, distinctive 2D layered structure and flexible options for modifying anions and cations. No review has previously delved specifically into ZnCr and NiCr LDH-based photocatalysts and therefore, this review highlights the recent surge in ZnCr and NiCr-based LDHs as potential photocatalysts for their applications in water purification and renewable energy generation. The structural and fundamental characteristics of layered double hydroxides and especially ZnCr-LDHs and NiCr-LDHs are outlined.
View Article and Find Full Text PDFThe transition towards renewable energy sources necessitates efficient energy storage systems to meet growing demands. Electrochemical capacitors, particularly electric double-layer capacitors (EDLCs), show promising performance due to their superior properties. However, the presence of resistance limits their performance.
View Article and Find Full Text PDFNanotechnology has emerged as a pivotal tool in biomedical research, particularly in developing advanced sensing platforms for disease diagnosis and therapeutic monitoring. Since gold nanoparticles are biocompatible and have special optical characteristics, they are excellent choices for surface-enhanced Raman scattering (SERS) sensing devices. Integrating fluorescence characteristics further enhances their utility in real-time imaging and tracking within biological systems.
View Article and Find Full Text PDFSince the establishment of the first global refinery in 1856, crude oil has remained one of the most lucrative natural resources worldwide. However, during the extraction process from reservoirs, crude oil gets contaminated with sediments, water, and other impurities. The presence of pressure, shear forces, and surface-active compounds in crude oil leads to the formation of unwanted oil/water emulsions.
View Article and Find Full Text PDFThere is much interest in developing metal-free halogenated graphene such as fluorinated graphene for various catalytic applications. In this work, a fluorine-doped graphene oxide photocatalyst was investigated for photocatalytic oxidation (PCO) of a volatile organic compound (VOC), namely gaseous methanol. The fluorination process of graphene oxide (GO) was carried out via a novel and facile solution-based photoirradiation method.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have proven to be very effective carriers for drug delivery in various biological applications. In recent years, the development of hybrid nanostructures has made significant progress, including developing an innovative MOF-loaded nanocomposite with a highly porous structure and low toxicity that can be used to fabricate core-shell nanocomposites by combining complementary materials. This review study discusses using MOF materials in cancer treatment, imaging, and antibacterial effects, focusing on oral cancer cells.
View Article and Find Full Text PDFEnvironmental pollution has become a worldwide issue. Rapid industrial and agricultural practices have increased organic contaminants in water supplies. Hence, many strategies have been developed to address this concern.
View Article and Find Full Text PDFThe undesirable side effects of conventional chemotherapy are one of the major problems associated with cancer treatment. Recently, with the development of novel nanomaterials, tumor-targeted therapies have been invented in order to achieve more specific cancer treatment with reduced unfavorable side effects of chemotherapic agents on human cells. However, the clinical application of nanomedicines has some shortages, such as the reduced ability to cross biological barriers and undesirable side effects in normal cells.
View Article and Find Full Text PDFWater pollution has been a prevalent issue globally for some time. Some pollutants are released into the water system without treatment, making the water not suitable for consumption. This problem may lead to more grave problems in the future including the destruction of the ecosystem along with the organisms inhabiting it, and illness and diseases endangering human health.
View Article and Find Full Text PDFIn today's world, the use of biosensors occupies a special place in a variety of fields such as agriculture and industry. New biosensor technologies can identify biological compounds accurately and quickly. One of these technologies is the phenomenon of surface plasmon resonance (SPR) in the development of biosensors based on their optical properties, which allow for very sensitive and specific measurements of biomolecules without time delay.
View Article and Find Full Text PDFIn this paper, we present the synthesis of C@FeO-MoO binary composite were prepared through the facile hydrothermal process. The ultrasonic aided adsorption efficacy was evaluated by studying triphenylmethane dye's adsorption potential. The ultrasonic aided adsorption capacity towards crystal violet was 993.
View Article and Find Full Text PDFTetracycline (TC) antibiotic removal from water bodies is important to provide clean water and sanitation. Mesoporous graphitic carbon nitride (GCN) photocatalyst derived from three different types of precursors manages to remove TC effectively under visible light irradiation. Among urea, thiourea, and melamine precursors, melamine-prepared GCN (MGCN) via thermal polymerization has the highest efficiency to photodegrade tetracycline (TC) antibiotics up to 99.
View Article and Find Full Text PDFIn this study, we have developed a new platform of polyoxometalate as a biocompatible and electrosensitive polymeric biosensor for the accurate detection of doxorubicin. For this purpose, we used a green synthesis approach using tartaric acid, glutamic acid, and kombucha solvent. Thanks to its bioinorganic components, the biogenic approach can chemically modify and improve the performance of the biosensor, which was experimentally confirmed.
View Article and Find Full Text PDFThe spread of viral diseases has caused global concern in recent years. Detecting viral infections has become challenging in medical research due to their high infectivity and mutation. A rapid and accurate detection method in biomedical and healthcare segments is essential for the effective treatment of pathogenic viruses and early detection of these viruses.
View Article and Find Full Text PDFSmart nanoexosomes are nanosized structures enclosed in lipid bilayers that are structurally similar to the viruses released by a variety of cells, including the cells lining the respiratory system. Of particular importance, the interaction between smart nanoexosomes and viruses can be used to develop antiviral drugs and vaccines. It is possible that nanoexosomes will be utilized and antibodies will be acquired more successfully for the transmission of an immune response if reconvalescent plasma (CP) is used instead of reconvalescent plasma exosomes (CPExo) in this concept.
View Article and Find Full Text PDF