The final synthetic step in the synthesis of cediranib, AZD2171, 1, is the alkylation of a phenol with an alkyl halide to generate an ether. Our need to understand and control the formation of synthetic impurities generated in this step of the synthesis led us to investigate the kinetics and mechanism of the alkylation of indolphenol, 2, 4-[(4-fluoro-2-methyl-1 H-indol-5-yl)oxy]-6-methoxyquinazolin-7-ol, by chloropyrrolidine, 3, 1-(3-chloropropyl)pyrrolidine. Studies in 1-methyl-2-pyrrolidinone (NMP) established that the active alkylating agent is the azetidinium ion, 4, 4-azoniaspiro[3.
View Article and Find Full Text PDFA selective aziridinium ring-opening was used to etherify an α-aryl-β-amino alcohol with stereochemical retention. This transformation was achieved in a biphasic system to address phenoxide solubility and the formation of a sulfonate ester impurity. The protecting group strategy was directed by a stability study of the activated α-aryl-β-amino alcohol in this system.
View Article and Find Full Text PDFThe reaction of quinazolones with POCl(3) to form the corresponding chloroquinazolines occurs in two distinct stages, which can be separated through appropriate temperature control. An initial phosphorylation reaction occurs readily under basic conditions (R(3)N, aq pK(a) > 9) at t < 25 °C to give a variety of phosphorylated intermediates. Pseudodimer formation, arising from reaction between phosphorylated intermediates and unreacted quinazolone, is completely suppressed at these temperatures, provided the system remains basic throughout the POCl(3)addition.
View Article and Find Full Text PDFThe kinetics of formation of amide, 4, from the corresponding carboxylic acid by reaction with the isopropyl ester of methionine (MIPE), mediated by carbodiimide EDCI, 1, and HOBt, 2, have been studied in 1-methyl-2-pyrrolidinone (NMP) using reaction calorimetry. The reaction rates have been found to be independent of the concentration of HOBt, showing that the rate-determining step is the reaction between the carboxylic acid and EDCI to give the corresponding O-acylisourea. The pH dependence of the observed rate constants for O-acylisourea formation is consistent with a second-order reaction between doubly protonated EDCI (EDCIH2(2+), 6) and the carboxylate group.
View Article and Find Full Text PDF