Publications by authors named "Lahrich S"

The widespread use of antibiotics has contributed to the control of disease and the nutritional well-being of livestock. Antibiotics reach the environment via excretions (urine and feces) from human and domestic animals, through non proper disposal or handling of unused drugs. The present study describes a green method for the synthesis of silver nanoparticle (AgNPs) using cellulose extracted from Phoenix dactylifera seed powder via mechanical stirrer method for the electroanalytical determination of ornidazole (ODZ) in milk and water samples.

View Article and Find Full Text PDF

In the last few decades, pharmaceuticals, credited with saving millions of lives, have emerged as a new class of environmental contaminants. These compounds can have both chronic and acute harmful effects on aquatic ecosystems and consequently on human health. Therefore, there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis.

View Article and Find Full Text PDF

The objective of this work is to study the toxicological effect of the imidacloprid (IMD) on common bean plants (Phaseolus vulgaris L) when used at high doses and its quantification by electrochemical method. Common bean plants were exposed to increasing concentrations of IMD and the different plant tissues were subjected to various analyses. The IMD detection in different tissues of the bean plant was performed after extraction on the metallic silver electrode using square wave voltammetry.

View Article and Find Full Text PDF

Flubendiamide (FBD) is the first commercially available phthalic acid diamide that targets ryanodine receptors (RyRs) in insects, which play a major role in lepidoptera control. However, excessive use of FBD can influence the quality of treated products leading to toxic effects on human health. The availability of rapid and convenient methods for evaluating FBD amount in the environment is necessary.

View Article and Find Full Text PDF

Some bacteria have developed resistance to antibiotics that were once commonly used to treat them. Moreover, this resistance has become more and more massive and worrying. During this work, we succeeded in synthesizing "metal-antibiotic" complexes, combining as a ligand for the metals of Cu (II), Zn (II) and Fe (III).

View Article and Find Full Text PDF

The management of SARS-CoV-2 has not yet been clearly determined and is based on potential therapies evaluated during the SARS-CoV and MERS-CoV outbreaks. An emerging potential therapeutic approach currently being evaluated in numerous clinical trials is the remdesivir agent, which acts on COVID-19 by interfering with key steps in the virus replication cycle. It is considered a therapeutic option to be evaluated against COVID-19, based on data on its in vitro and in vivo activity against MERS-CoV and SARS-CoV coronaviruses.

View Article and Find Full Text PDF

The purpose of this paper is the electrodeposition of silver particles on graphite electrode (Ag@GrCE) using chronoamperometry and the use of this electrode for the determination of thiamethoxam. The electrode was prepared by chronoamperometry and characterized by X-Ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), EDX analysis and electrochemical impedance spectroscopy. The obtained electrode exhibits excellent electrocatalytic activity toward thiamethoxam reduction.

View Article and Find Full Text PDF

Emerging viruses are a major public health problem. Most zoonotic pathogens originate in wildlife, including human immunodeficiency virus (HIV), influenza, Ebola, and coronavirus. Severe acute respiratory syndrome (SARS) is a viral respiratory illness caused by a coronavirus called SARS-associated coronavirus (SARS-CoV).

View Article and Find Full Text PDF

Amoxicillin (AMX) is among the most successful antibiotics used for human therapy. It is used extensively to prevent or treat bacterial infections in humans and animals. However, the widespread distribution and excess utilization of AMX can be an environmental and health risk due to the hazardous potential associated to its pharmaceutical industries effluents.

View Article and Find Full Text PDF

The technologies used for coronavirus testing consist of a pre-existing device developed to examine different pathologies, such as bacterial infections, or cancer biomarkers. However, for the 2019 pandemic, researchers knew that their technology could be modified to detect a low viral load at an early stage. Today, countries around the world are working to control the new coronavirus disease (n-SARS-CoV-2).

View Article and Find Full Text PDF

The development of nanoparticle research has grown considerably in recent years. One of the reasons for the considerable current interest in nanoparticles is because such materials frequently display unusual physical (structural, electronic, magnetic, and optical) and chemical (catalytic) properties. The development of nanomaterials is of interest to the scientific community and industrial companies.

View Article and Find Full Text PDF

Background: The aim of this work is the detection and quantification of bioaccumulated thiamethoxam (THM) in Zea mays at a silver electrode using square-wave voltammetry. Thiamethoxam bioaccumulation and plant development were followed for 10 days from germination to seedling growth. Germination rate, accumulation rate, root length, and plant length were used as indicators.

View Article and Find Full Text PDF

Paraquat (1,10-dimethyl-4,40-dipyridinium chloride), also known as methyl viologen, is widely used as a quaternary ammonium herbicide (broadleaf weed killer) all over the world owing to its excellent effect in plant cells for crop protection and horticultural use. However, it is dangerous because of its high acute toxicity even at low concentrations. Its detection in the environment is therefore necessary.

View Article and Find Full Text PDF

This paper reports on the fabrication of material comprised of chitosan stabilized silver nanoparticles on the carbon paste and its electro-catalytic reduction toward 4-nitroaniline. The synthesized material was obtained when AgNO was mixed with chitosan as a stabilizing agent and NaBH as a reducing agent. The developed Chitosan-AgNPs has been confirmed using UV-Vis spectroscopy, X-Ray diffraction analysis, scanning electron microscopy (SEM) and infrared spectroscopy.

View Article and Find Full Text PDF

A sensitive, selective and reproducible electrochemical method has been established for the electroanalysis of 4-nitroaniline (4-NA) using a carbon paste electrode modified with a chitosan solution gelled in acetic acid (CS@CPE). The modified electrode was then characterized spectroscopically using Fourier Transform Infrared (FTIR) spectroscopy. In addition, the electrochemical and interfacial characteristics of the as-prepared modified electrode were assessed by potentiodynamic cyclic voltammetry (CV) and AC electrochemical impedance spectroscopy (EIS).

View Article and Find Full Text PDF

Background: Thiamethoxam (3-[(2-chloro-5-thiazolyl)methyl]tetrahydro-5-methyl-N-nitro-4H-1,3,5-oxadiazin-4-imine) belongs to a relatively new class of insecticides known as neonicotinoids, which can block irreversibly nicotinic acetylcholine receptors of the nervous system of insects. Its determination at trace levels is an acute analytical problem. Therefore, chromatography, spectroscopy, and electrochemical technics were reported.

View Article and Find Full Text PDF

A simple, selective and sensitive electrochemical method is described for the determination of different aldehydes at glassy carbon electrode using electrochemical impedance spectroscopy (EIS). The measurements were performed after their derivatization with 2,4-dinitrophenylhydrazine (DNPH) in acidic medium. The impedance measurements were investigated in the frequency range from 100 mHz to 100 kHz at a potential of 1.

View Article and Find Full Text PDF

The electrochemical detection of ibuprofen has been studied on Palladium-Montmorillonite (Mt) modified carbon paste electrode using differential pulse voltammetry. The optimization of the modifier preparation and the instrumental parameters was investigated. The results indicate that ibuprofen oxidation was favored in the presence of Pd-PdO particles.

View Article and Find Full Text PDF

In this paper, we report a synthesis of a new lacunar apatite, KCdPb3(PO4)3, using solid state method, and its application as modifier of carbon paste electrode (KLA-CPE) to determine mercury (II). Sodium replacement with potassium induced a linear variation of the crystallographic parameters a and c according to Vegard's law and led to amplify the electrical signal of the working electrode. The peak currents of mercury (II) increased linearly with their concentration at the range from 2.

View Article and Find Full Text PDF

Synthesis of apatites, Na1-xKxCaPb3(PO4)3 0 ⩽ x ⩽ 1, with anion vacancy were carried out using solid state reactions. The solid solution of apatite-type structure crystallize in the hexagonal system, space group P63/m (No. 176).

View Article and Find Full Text PDF

A novel analytical approach has been developed and evaluated for the quantitative analysis of paraquat herbicides which can be found at trace levels in olive oil and olives. The aim of this work is to optimize all factors that can influence this determination by a carbon paste electrode modified with chitin (Chit-CPE). The best responses were obtained with square wave potential in diluted Na2SO4 as supporting electrolyte.

View Article and Find Full Text PDF