Gastrointestinal (GI) disease examination presents significant challenges to doctors due to the intricate structure of the human digestive system. Colonoscopy and wireless capsule endoscopy are the most commonly used tools for GI examination. However, the large amount of data generated by these technologies requires the expertise and intervention of doctors for disease identification, making manual analysis a very time-consuming task.
View Article and Find Full Text PDFMedical image segmentation is crucial for accurate diagnosis and treatment in medical image analysis. Among the various methods employed, fully convolutional networks (FCNs) have emerged as a prominent approach for segmenting medical images. Notably, the U-Net architecture and its variants have gained widespread adoption in this domain.
View Article and Find Full Text PDFColorectal cancer (CRC) stands out as one of the most prevalent global cancers. The accurate localization of colorectal polyps in endoscopy images is pivotal for timely detection and removal, contributing significantly to CRC prevention. The manual analysis of images generated by gastrointestinal screening technologies poses a tedious task for doctors.
View Article and Find Full Text PDFColorectal cancer is one of the most common malignancies and the leading cause of cancer death worldwide. Wireless capsule endoscopy is currently the most frequent method for detecting precancerous digestive diseases. Thus, precise and early polyps segmentation has significant clinical value in reducing the probability of cancer development.
View Article and Find Full Text PDFSmall bowel polyps exhibit variations related to color, shape, morphology, texture, and size, as well as to the presence of artifacts, irregular polyp borders, and the low illumination condition inside the gastrointestinal GI tract. Recently, researchers developed many highly accurate polyp detection models based on one-stage or two-stage object detector algorithms for wireless capsule endoscopy (WCE) and colonoscopy images. However, their implementation requires a high computational power and memory resources, thus sacrificing speed for an improvement in precision.
View Article and Find Full Text PDF