We describe the process of generating a fluorophore-induced plasmonic current (FIPC) from copper nanoparticle films. Previous work and the literature have shown that excited near-field fluorophores are able to plasmonically couple with metal nanoparticle films (MNFs), inducing surface plasmons in the films. These induced surface plasmons are then in turn able to generate a directly measurable electrical current across the film.
View Article and Find Full Text PDFSample preparation is one of the most time-consuming steps in diagnostic assays, particularly those involving biological samples. In this paper we report the results of finite-difference time-domain (FDTD) simulations and thermographic imaging experiments carried out with the intent of designing a microplate for rapid, high-throughput sample preparation to aid diagnostic assays. This work is based on devices known as microwave lysing triangles (MLTs) that have been proven capable of rapid sample preparation when irradiated in a standard microwave cavity.
View Article and Find Full Text PDFThe ability for safe and rapid pathogenic sample transportation and subsequent detection is an increasing challenge throughout the world. Herein, we describe and use bead-beating, vortex, sonication, 903 protein saver cards, and Lyse-It methods, aiming to inactivate Gram-positive and -negative bacteria with subsequent genome DNA (quantitative Polymerase Chain Reaction) qPCR detection. The basic concepts behind the four chosen technologies is their versatility, cost, and ease of use in developed and underdeveloped countries.
View Article and Find Full Text PDF