Despite decades of intense research, glioma remains a disease for which no adequate clinical treatment exists. Given the ongoing therapeutic failures of conventional treatment approaches, nanomedicine may offer alternative options because it can increase the bioavailability of drugs and alter their pharmacokinetics. Here, a new type of synthetic protein nanoparticles (SPNPs) is reported that allow for effective loading and controlled release of the potent cancer drug, paclitaxel (PTX) - a drug that so far has been unsuccessful in glioma treatment due to hydrophobicity, low solubility, and associated delivery challenges.
View Article and Find Full Text PDFMetamaterials are emerging as an unconventional platform to perform computing abstractions in physical systems by processing environmental stimuli into information. While computation functions have been demonstrated in mechanical systems, they rely on compliant mechanisms to achieve predefined states, which impose inherent design restrictions that limit their miniaturization, deployment, reconfigurability, and functionality. Here, a metamaterial system is described based on responsive magnetoactive Janus particle (MAJP) swarms with multiple programmable functions.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2024
Protein nanoparticles are an attractive class of materials for nanomedicine applications due to the intrinsic biocompatibility, biodegradability, and intrinsic functionality of their constituent proteins. Despite the clinical success of select protein nanoparticles, this class of nanocarriers remains understudied and underdeveloped compared to lipid and polymer nanoparticles due to challenges related to formulation optimization, large design space, and their structural complexity. In this work, a modular strategy for protein nanoparticle preparation based on the concept of photoreactive jetting is introduced.
View Article and Find Full Text PDFObjectives: In this study, we used atomic force microscopy (AFM) to quantify the size of surface pore apertures of enamel white spot lesions and then demonstrated the penetration of fluorapatite nanocrystals (nFA) into the subsurface of these lesions.
Methods: For the porosity study, enamel lesions were created on three sound human teeth using a demineralizing gel for 8 days. The interface between sound enamel and the artificial lesion was analyzed by AFM.
We present a modular strategy to synthesize nanoparticle sensors equipped with dithiomaleimide-based, fluorescent molecular reporters capable of discerning minute changes in interparticle chemical environments based on fluorescence lifetime analysis. Three types of nanoparticles were synthesized with the aid of tailor-made molecular reporters, and it was found that protein nanoparticles exhibited greater sensitivity to changes in the core environment than polymer nanogels and block copolymer micelles. Encapsulation of the hydrophobic small-molecule drug paclitaxel (PTX) in self-reporting protein nanoparticles induced characteristic changes in fluorescence lifetime profiles, detected via time-resolved fluorescence spectroscopy.
View Article and Find Full Text PDFPreviously, we reported successful cellular expansion of a murine colorectal carcinoma cell line (CT-26) using a three-dimensional (3D) engineered extracellular matrix (EECM) fibrillar scaffold structure. CCL-247 were grown over a limited time period of 8 days on 3D EECM or tissue culture polystyrene (TCPS). Cells were then assayed for growth, electroporation efficiency and Vigil manufacturing release criteria.
View Article and Find Full Text PDFElemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions.
View Article and Find Full Text PDFComposites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium.
View Article and Find Full Text PDFObjective: Brain organoids are miniaturized in vitro brain models generated from pluripotent stem cells, which resemble full-sized brain more closely than conventional two-dimensional cell cultures. Although brain organoids mimic the human brain's cell-to-cell network interactions, they generally fail to faithfully recapitulate cell-to-matrix interactions. Here, an engineered framework, called an engineered extracellular matrix (EECM), was developed to provide support and cell-to-matrix interactions to developing brain organoids.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
As the current top-down microchip manufacturing processes approach their resolution limits, there is a need for alternative patterning technologies that offer high feature densities and edge fidelity with single-digit nanometer resolution. To address this challenge, bottom-up processes have been considered, but they typically require sophisticated masking and alignment schemes and/or face materials' compatibility issues. In this work, we report a systematic study into the impact of thermodynamic processes on the area selectivity of chemical vapor deposition (CVD) polymerization of functional [2.
View Article and Find Full Text PDFThe potential of therapeutically loaded nanoparticles (NPs) has been successfully demonstrated during the last decade, with NP-mediated nonviral gene delivery gathering significant attention as highlighted by the broad clinical acceptance of mRNA-based COVID-19 vaccines. A significant barrier to progress in this emerging area is the wild variability of approaches reported in published literature regarding nanoparticle characterizations. Here, we provide a brief overview of the current status and outline important concerns regarding the need for standardized protocols to evaluate NP uptake, NP transfection efficacy, drug dose determination, and variability of nonviral gene delivery systems.
View Article and Find Full Text PDFIntroduction: Oral squamous cell carcinoma (OSCC), is associated with high morbidity and mortality. Preemptive interventions have been postulated to provide superior therapeutic options, but their implementation has been restricted by the availability of broadly applicable local delivery systems.
Methods: We address this challenge by engineering a delivery vehicle, Janus nanoparticles (JNP), that combine the dual mucoadhesive properties of a first cationic chitosan compartment with a second hydrophobic poly(lactide-co-glycolide) release compartment.
Adv Mater Interfaces
August 2022
For individuals who have experienced tooth loss, dental implants are an important treatment option for oral reconstruction. For these patients, alveolar bone augmentation and acceleration of osseointegration optimize implant stability. Traditional oral surgery often requires invasive procedures, which can result in prolonged treatment time and associated morbidity.
View Article and Find Full Text PDFPrevious work has shown targeted fluorescent starch nanoparticles (TFSNs) can label the subsurface of carious lesions and assist dental professionals in the diagnostic process. In this study, we aimed to evaluate the potential of using artificial intelligence (AI) to detect and score carious lesions using ICDAS in combination with fluorescent imaging following application of TFSNs on teeth with a range of lesion severities, using ICDAS-labeled images as the reference standard. A total of 130 extracted human teeth with ICDAS scores from 0 to 6 were selected by a calibrated cariologist.
View Article and Find Full Text PDFObjectives: We have previously shown fluorescent cationic starch nanoparticles (FCSNs) penetrate enamel surface porosity of active carious lesions, potentially aiding their detection. Here, we evaluate the in vitro diagnostic accuracy of FCSNs in detecting occlusal caries compared to histologic reference standard.
Methods: 100 extracted human teeth were selected with sound (50), or either non-cavitated (25) or cavitated (25) lesions.
Acidic pH is critical to the function of the gastrointestinal system, bone-resorbing osteoclasts, and the endolysosomal compartment of nearly every cell in the body. Non-invasive, real-time fluorescence imaging of acidic microenvironments represents a powerful tool for understanding normal cellular biology, defining mechanisms of disease, and monitoring for therapeutic response. While commercially available pH-sensitive fluorescent probes exist, several limitations hinder their widespread use and potential for biologic application.
View Article and Find Full Text PDFSuccessful periodontal repair and regeneration requires the coordinated responses from soft and hard tissues as well as the soft tissue-to-bone interfaces. Inspired by the hierarchical structure of native periodontal tissues, tissue engineering technology provides unique opportunities to coordinate multiple cell types into scaffolds that mimic the natural periodontal structure in vitro. In this study, we designed and fabricated highly ordered multicompartmental scaffolds by melt electrowriting, an advanced 3-dimensional (3D) printing technique.
View Article and Find Full Text PDFGlioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∼5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood-brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression.
View Article and Find Full Text PDFMolecular structuring of soft matter with precise arrangements over multiple hierarchical levels, especially on polymer surfaces, and enabling their post-synthetic modulation has tremendous potential for application in molecular engineering and interfacial science. Here, recent research and developments in design strategies for structurally controlled polymer surfaces via cyclophane-based chemical vapor deposition (CVD) polymerization with precise control over chemical functionalities and post-CVD fabrication via orthogonal surface functionalization that facilitates the formation of designable biointerfaces are summarized. Particular discussion about innovative approaches for the templated synthesis of shape-controlled CVD polymers, ranging from 1D to 3D architecture, including inside confined nanochannels, nanofibers/nanowires synthesis into an anisotropic media such as liquid crystals, and CVD polymer nanohelices via hierarchical chirality transfer across multiple length scales is provided.
View Article and Find Full Text PDFWith the ever-increasing use of 3D cell models toward studying bio-nano interactions and offering alternatives to traditional 2D and experiments, methods to image biological tissue in real time and with high spatial resolution have become a must. A suitable technique therefore is surface-enhanced Raman scattering (SERS)-based microscopy, which additionally features reduced photocytotoxicity and improved light penetration. However, optimization of imaging and postprocessing parameters is still required.
View Article and Find Full Text PDFNanoparticle-based delivery of therapeutics to the brain has had limited clinical impact due to challenges crossing the blood-brain barrier (BBB). Certain cells, such as monocytes, possess the ability to migrate across the BBB, making them attractive candidates for cell-based brain delivery strategies. In this work, we explore nanoparticle design parameters that impact both monocyte association and monocyte-mediated BBB transport.
View Article and Find Full Text PDFThe development of simple and accurate methods to predict mutations in proteins remains an unsolved challenge in modern biochemistry. It is discovered that critical information about primary and secondary peptide structures can be inferred from the stains left behind by their drying droplets. To analyze the complex stain patterns, deep-learning neuronal networks are challenged with polarized light microscopy images derived from the drying droplet deposits of a range of amyloid beta (1-42) (Aβ ) peptides.
View Article and Find Full Text PDF