Publications by authors named "Laguerre G"

Fifty-eight rhizobial strains were isolated from root nodules of Vicia faba cv. Equina and Vicia faba cv. Minor by the host-trapping method in soils collected from eleven sites in Bejaia, Eastern Algeria.

View Article and Find Full Text PDF

Jatropha curcas, a Euphorbiaceae species that produces many toxicants, is increasingly planted as an agrofuel plant in Senegal. The purpose of this study was to determine whether soil priming induced by J. curcas monoculture could alter the rhizobial populations that nodulate cowpea and acacia, two locally widespread legumes.

View Article and Find Full Text PDF

The genetic structure of rhizobia nodulating pea and lentil in Algeria, Northern Africa was determined. A total of 237 isolates were obtained from root nodules collected on lentil (Lens culinaris), proteaginous and forage pea (Pisum sativum) growing in two eco-climatic zones, sub-humid and semi-arid, in Eastern Algeria. They were characterised by PCR-restriction fragment length polymorphism (RFLP) of the 16S-23S rRNA intergenic region (IGS), and the nodD-F symbiotic region.

View Article and Find Full Text PDF

The genetic diversity of native cowpea rhizobia originating from 60 sites across four eco-geographic zones in Senegal was studied. More than 300 cowpea nodules were analyzed by PCR-RFLP of the 16S-23S rDNA InterGenic Spacer region (IGS). Alignments of IGS sequences indicated that all genotypes were grouping within the Bradyrhizobium genus.

View Article and Find Full Text PDF

Variations in the patterns of diversity of symbionts have been described worldwide on Mimosa pudica, a pan-tropical invasive species that interacts with both α and β-rhizobia. In this study, we investigated if symbiont competitiveness can explain these variations and the apparent prevalence of β- over α-rhizobia. We developed an indirect method to measure the proportion of nodulation against a GFP reference strain and tested its reproducibility and efficiency.

View Article and Find Full Text PDF

• Responses of the Medicago truncatula-Sinorhizobium interaction to variation in N₂-fixation of the bacterial partner were investigated. • Split-root systems were used to discriminate between local responses, at the site of interaction with bacteria, and systemic responses related to the whole plant N status. • The lack of N acquisition by a half-root system nodulated with a nonfixing rhizobium triggers a compensatory response enabling the other half-root system nodulated with N₂-fixing partners to compensate the local N limitation.

View Article and Find Full Text PDF

Rhizobia are soil bacteria able to develop a nitrogen-fixing symbiosis with legumes. They are taxonomically spread among the alpha and beta subclasses of the Proteobacteria. Mimosa pudica, a tropical invasive weed, has been found to have an affinity for beta-rhizobia, including species within the Burkholderia and Cupriavidus genera.

View Article and Find Full Text PDF

The genetic diversity of 221 Mimosa pudica bacterial symbionts trapped from eight soils from diverse environments in French Guiana was assessed by 16S rRNA PCR-RFLP, REP-PCR fingerprints, as well as by phylogenies of their 16S rRNA and recA housekeeping genes, and by their nifH, nodA and nodC symbiotic genes. Interestingly, we found a large diversity of beta-rhizobia, with Burkholderia phymatum and Burkholderia tuberum being the most frequent and diverse symbiotic species. Other species were also found, such as Burkholderia mimosarum, an unnamed Burkholderia species and, for the first time in South America, Cupriavidus taiwanensis.

View Article and Find Full Text PDF

Phage-resistant and -susceptible bacteria from nodules of alfalfa and sweet clover, grown at a site without a known history of cultivation, were identified as diverse genotypes of Ensifer, Rhizobium and Phyllobacterium species based on sequence analysis of ribosomal (16S and 23S rRNA) and protein-encoding (atpD and recA) genes, Southern hybridization/RFLP and a range of phenotypic characteristics. Among phage-resistant bacteria, one genotype of Rhizobium sp. predominated on alfalfa (frequency approximately 68 %) but was recovered infrequently ( approximately 1 %) from sweet clover.

View Article and Find Full Text PDF

This study reports the multilocus sequence analysis (MLSA) of nine house-keeping gene fragments (atpD, dnaK, glnA, glnB, gltA, gyrB, recA, rpoB and thrC) on a collection of 38 Bradyrhizobium isolated from Aeschynomene species in Senegal, which had previously been characterised by several phenotypic and genotypic techniques, allowing a comparative analysis of MLSA resolution power for species delineation in this genus. The nifH locus was also studied to compare house-keeping and symbiotic gene phylogenies and obtain insights into the unusual symbiotic properties of these Aeschynomene symbionts. Phylogenetic analyses (maximum likelihood, Bayesian) of concatenated nine loci produced a well-resolved phylogeny of the strain collection separating photosynthetic bradyrhizobial strains (PB) from non-photosynthetic bradyrhizobial (NPB) ones.

View Article and Find Full Text PDF

Vigna mungo, Vigna radiata and Vigna unguiculata are important legume crops cultivated in India, but little is known about the genetic resources in native rhizobia that nodulate these species. To identify these bacteria, a core collection of 76 slow-growing isolates was built from root nodules of V. mungo, V.

View Article and Find Full Text PDF

Sixty-seven isolates were isolated from nodules collected on roots of Mediterranean shrubby legumes Retama raetam and Retama sphaerocarpa growing in seven ecological-climatic areas of northeastern Algeria. Genetic diversity of the Retama isolates was analyzed based on genotyping by restriction fragment length polymorphism of PCR-amplified fragments of the 16S rRNA gene, the intergenic spacer (IGS) region between the 16S and 23S rRNA genes (IGS), and the symbiotic genes nifH and nodC. Eleven haplotypes assigned to the Bradyrhizobium genus were identified.

View Article and Find Full Text PDF

Fifty isolates from root nodules of soybean plants sampled in five agricultural-ecological-climatic regions of India were analyzed by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene, the intergenic spacer region between the 16S and 23S rRNA genes (IGS), and the nifH and nodC genes. Eight haplotypes assigned to the Bradyrhizobium genus were identified, and the genetic diversity was conserved across regions. Sequence analyses of the IGS and the dnaK, glnII, recA, and nifH genes revealed three groups.

View Article and Find Full Text PDF

The symbiotic relationships between legumes and their nitrogen (N(2))-fixing bacterial partners (rhizobia) vary in effectiveness to promote plant growth according to both bacterial and legume genotype. To assess the selective effect of host plant on its microsymbionts, the influence of the pea (Pisum sativum) genotype on the relative nodulation success of Rhizobium leguminosarum biovar viciae (Rlv) genotypes from the soil populations during plant development has been investigated. Five pea lines were chosen for their genetic variability in root and nodule development.

View Article and Find Full Text PDF

The variability of the developmental responses of two contrasting cultivars of pea (Pisum sativum) was studied in relation to the genetic diversity of their nitrogen-fixing symbiont Rhizobium leguminosarum bv. viciae. A sample of 42 strains of pea rhizobia was chosen to represent 17 genotypes predominating in indigenous rhizobial populations, the genotypes being defined by the combination of haplotypes characterized with rDNA intergenic spacer and nodD gene regions as markers.

View Article and Find Full Text PDF

Background And Aims: Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N(2) and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes.

View Article and Find Full Text PDF

Nodulation of common bean was explored in six oases in the south of Tunisia. Nineteen isolates were characterized by PCR-RFLP of 16S rDNA. Three species of rhizobia were identified, Rhizobium etli, Rhizobium gallicum and Sinorhizobium meliloti.

View Article and Find Full Text PDF

The use of pesticides in agricultural soils may affect the soil microbiota. The effect of repeated application of copper sulfate in soil on indigenous populations of rhizobia was assessed in a medium-term field experiment. Copper sulfate was applied over 8 years at two different rates, 12.

View Article and Find Full Text PDF

In a previous work, we showed that non-nodulating agrobacteria strains were able to colonize root nodules of common bean. Both rhizobia and agrobacteria co-existed in the infected nodules. No impact on symbiosis was found in laboratory conditions when using sterile gravel as a support for growth.

View Article and Find Full Text PDF

Little is known about factors that affect the indigenous populations of rhizobia in soils. We compared the abundance, diversity and genetic structure of Rhizobium leguminosarum biovar viciae populations in soils under different crop managements, i.e.

View Article and Find Full Text PDF

Non-nodulating Agrobacterium-like strains identified among root nodule isolates of common bean were labeled with gusA, a reporter gene encoding beta-glucuronidase (GUS). Bean plants were then co-inoculated with an infective Rhizobium strain and labeled transconjugants of Agrobacterium-like strains. Blue staining of nodules showed that Agrobacterium-like strains were able to colonize these symbiotic organs.

View Article and Find Full Text PDF

Populations of Rhizobium leguminosarum biovar viciae were sampled from two bulk soils, rhizosphere, and nodules of host legumes, fava bean (Vicia faba) and pea (Pisum sativum) grown in the same soils. Additional populations nodulating peas, fava beans, and vetches (Vicia sativa) grown in other soils and fava bean-nodulating strains from various geographic sites were also analyzed. The rhizobia were characterized by repetitive extragenomic palindromic-PCR fingerprinting and/or PCR-restriction fragment length polymorphism (RFLP) of 16S-23S ribosomal DNA intergenic spacers as markers of the genomic background and PCR-RFLP of a nodulation gene region, nodD, as a marker of the symbiotic component of the genome.

View Article and Find Full Text PDF

Abstract A collection of 160 isolates of rhizobia nodulating Phaseolus vulgaris in three geographical regions in Tunisia was characterized by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR)-amplified 16S rDNA, nifH and nodC genes. Nine groups of rhizobia were delineated: Rhizobium gallicum biovar (bv.) gallicum, Rhizobium leguminosarum bv.

View Article and Find Full Text PDF

The nodC and nifH genes were characterized in a collection of 83 rhizobial strains which represented 23 recognized species distributed in the genera Rhizobium, Sinorhizobium, Mesorhizobium and Bradyrhizobium, as well as unclassified rhizobia from various host legumes. Conserved primers were designed from available nucleotide sequences and were able to amplify nodC and nifH fragments of about 930 bp and 780 bp, respectively, from most of the strains investigated. RFLP analysis of the PCR products resulted in a classification of these rhizobia which was in general well-correlated with their known host range and independent of their taxonomic status.

View Article and Find Full Text PDF

We examined the genotypic diversity of 64 Bradyrhizobium strains isolated from nodules from 27 native leguminous plant species in Senegal (West Africa) belonging to the genera Abrus, Alysicarpus, Bryaspis, Chamaecrista, Cassia, Crotalaria, Desmodium, Eriosema, Indigofera, Moghania, Rhynchosia, Sesbania, Tephrosia, and Zornia, which play an ecological role and have agronomic potential in arid regions. The strains were characterized by intergenic spacer (between 16S and 23S rRNA genes) PCR and restriction fragment length polymorphism (IGS PCR-RFLP) and amplified fragment length polymorphism (AFLP) fingerprinting analyses. Fifty-three reference strains of the different Bradyrhizobium species and described groups were included for comparison.

View Article and Find Full Text PDF