Publications by authors named "Lagoudakis P"

Vortices are topologically distinctive objects appearing as phase twists in coherent fields of optical beams and Bose-Einstein condensates. Structured networks and artificial lattices of coupled vortices could offer a powerful platform to study and simulate interaction mechanisms between constituents of condensed matter systems, such as antiferromagnetic interactions, by replacement of spin angular momentum with orbital angular momentum. Here, we realize such a platform using a macroscopic quantum fluid of light based on exciton-polariton condensates.

View Article and Find Full Text PDF

Various polytypes of van der Waals (vdW) materials can be formed by sulfur and tin, which exhibit distinctive and complementary electronic properties. Hence, these materials are attractive candidates for the design of multifunctional devices. This work demonstrates direct selective growth of tin sulfides by laser irradiation.

View Article and Find Full Text PDF

Today, almost all information processing is performed using electronic logic circuits operating at several gigahertz frequency. All-optical logic holds the promise to allow for up to three orders of magnitude higher speed. Whereas essential all-optical transistor functionalities were demonstrated across a range of platforms, utilising them to implement a complete Boolean logic gate set and in particular negation, i.

View Article and Find Full Text PDF

The development of high-speed, all-optical polariton logic devices underlies emerging unconventional computing technologies and relies on advancing techniques to reversibly manipulate the spatial extent and energy of polartion condensates. We investigate active spatial control of polariton condensates independent of the polariton, gain-inducing excitation profile. This is achieved by introducing an extra intracavity semiconductor layer, nonresonant to the cavity mode.

View Article and Find Full Text PDF

The direct laser synthesis of periodically nanostructured 2D transition metal dichalcogenide (2D-TMD) films, from single source precursors, is presented here. Laser synthesis of MoS and WS tracks is achieved by localized thermal dissociation of Mo and W thiosalts, caused by the strong absorption of continuous wave (c.w.

View Article and Find Full Text PDF

The appearance of quantized vortices in the classical "rotating bucket" experiments of liquid helium and ultracold dilute gases provides the means for fundamental and comparative studies of different superfluids. Here, we realize the rotating bucket experiment for optically trapped quantum fluid of light based on exciton-polariton Bose-Einstein condensate in semiconductor microcavity. We use the beating note of two frequency-stabilized single-mode lasers to generate an asymmetric time-periodic rotating, nonresonant excitation profile that both injects and stirs the condensate through its interaction with a background exciton reservoir.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used interferometric measurements to observe that an optically trapped exciton-polariton condensate exhibits persistent pseudo-spin precession during an optical pulse, with over 100,000 precessions occurring in a single 20 μs pulse.
  • This precession is driven by polariton nonlinear interactions, which create a self-induced magnetic field that influences the spin dynamics of the condensate.
  • The frequency of the Larmor precession and its trajectory can be manipulated by changing the condensate density with optical methods, highlighting its potential for applications in magnetometry and the development of spin-squeezed polariton condensates.
View Article and Find Full Text PDF

The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality.

View Article and Find Full Text PDF

Topological physics relies on Hamiltonian's eigenstate singularities carrying topological charges, such as Dirac points, and - in non-Hermitian systems - exceptional points (EPs), lines or surfaces. So far, the reported non-Hermitian topological transitions were related to the creation of a pair of EPs connected by a Fermi arc out of a single Dirac point by increasing non-Hermiticity. Such EPs can annihilate by reducing non-Hermiticity.

View Article and Find Full Text PDF

Quasiperiodicity is a form of spatial order that has been observed in quasicrystalline matter but not light. We construct a quasicrystalline surface out of a light emitting diode. Using a nanoscale waveguide as a microscope (NSOM), we directly image the light field at the surface of the diode.

View Article and Find Full Text PDF

We demonstrate spontaneous formation of a nonlinear vortex cluster state in a microcavity exciton-polariton condensate with time-periodic sign flipping of its topological charges at the GHz scale. When optically pumped with a ring-shaped nonresonant laser, the trapped condensate experiences intricate high-order mode competition and fractures into two distinct trap levels. The resulting mode interference leads to robust condensate density beatings with periodic appearance of orderly arranged phase singularities.

View Article and Find Full Text PDF

We implement full polarization tomography on photon correlations in a spinor exciton-polariton condensate. Our measurements reveal condensate pseudospin mean-field dynamics spanning from stochastic switching between linear polarization components, limit cycles, and stable fixed points, and their intrinsic relation to the condensate photon statistics. We optically harness the cavity birefringence, polariton interactions, and the optical orientation of an incoherent exciton reservoir to engineer photon statistics with precise control.

View Article and Find Full Text PDF

In this Letter, we give an analytical quantum description of a nonequilibrium polariton Bose-Einstein condensate (BEC) based on the solution of the master equation for the full polariton density matrix in the limit of fast thermalization. We find the density matrix of a nonequilibrium BEC, that takes into account quantum correlations between all polariton states. We show that the formation of BEC is accompanied by the build-up of cross-correlations between the ground state and the excited states reaching their highest values at the condensation threshold.

View Article and Find Full Text PDF

Spin-orbit interactions which couple the spin of a particle with its momentum degrees of freedom lie at the center of spintronic applications. Of special interest in semiconductor physics are Rashba and Dresselhaus spin-orbit coupling. When equal in strength, the Rashba and Dresselhaus fields result in SU(2) spin rotation symmetry and emergence of the persistent spin helix only investigated for charge carriers in semiconductor quantum wells.

View Article and Find Full Text PDF

We have developed a simplified approach to fabricate high-reflectivity mirrors suitable for applications in a strongly-coupled organic-semiconductor microcavity. Such mirrors are based on a small number of quarter-wave dielectric pairs deposited on top of a thick silver film that combine high reflectivity and broad reflectivity bandwidth. Using this approach, we construct a microcavity containing the molecular dye BODIPY-Br in which the bottom cavity mirror is composed of a silver layer coated by a SiO and a NbO film, and show that this cavity undergoes polariton condensation at a similar threshold to that of a control cavity whose bottom mirror consists of ten quarter-wave dielectric pairs.

View Article and Find Full Text PDF

The recent progress in nanotechnology and single-molecule spectroscopy paves the way for emergent cost-effective organic quantum optical technologies with potential applications in useful devices operating at ambient conditions. We harness a π-conjugated ladder-type polymer strongly coupled to a microcavity forming hybrid light-matter states, so-called exciton-polaritons, to create exciton-polariton condensates with quantum fluid properties. Obeying Bose statistics, exciton-polaritons exhibit an extreme nonlinearity when undergoing bosonic stimulation, which we have managed to trigger at the single-photon level, thereby providing an efficient way for all-optical ultrafast control over the macroscopic condensate wavefunction.

View Article and Find Full Text PDF

One of the recently established paradigms in condensed matter physics is examining a system's behaviour in artificial potentials, giving insight into phenomena of quantum fluids in hard-to-reach settings. A prominent example is the matter-wave scatterer lattice, where high energy matter waves undergo transmission and reflection through narrow width barriers leading to stringent phase matching conditions with lattice band formation. In contrast to evanescently coupled lattice sites, the realisation of a scatterer lattice for macroscopic matter-wave fluids has remained elusive.

View Article and Find Full Text PDF

Vorticity is a key ingredient to a broad variety of fluid phenomena, and its quantised version is considered to be the hallmark of superfluidity. Circulating flows that correspond to vortices of a large topological charge, termed giant vortices, are notoriously difficult to realise and even when externally imprinted, they are unstable, breaking into many vortices of a single charge. In spite of many theoretical proposals on the formation and stabilisation of giant vortices in ultra-cold atomic Bose-Einstein condensates and other superfluid systems, their experimental realisation remains elusive.

View Article and Find Full Text PDF

The state of the art in optical biosensing is focused on reaching high sensitivity at a single wavelength by using any type of optical resonance. This common strategy, however, disregards the promising possibility of simultaneous measurements of a bioanalyte's refractive index over a broadband spectral domain. Here, we address this issue by introducing the approach of in-fibre multispectral optical sensing (IMOS).

View Article and Find Full Text PDF

Synthetic crystal lattices provide ideal environments for simulating and exploring the band structure of solid-state materials in clean and controlled experimental settings. Physical realisations have, so far, dominantly focused on implementing irreversible patterning of the system, or interference techniques such as optical lattices of cold atoms. Here, we realise reprogrammable synthetic band-structure engineering in an all optical exciton-polariton lattice.

View Article and Find Full Text PDF

We studied monatomic linear carbon chains stabilized by gold nanoparticles attached to their ends and deposited on a solid substrate. We observe spectral features of straight chains containing from 8 to 24 atoms. Low-temperature PL spectra reveal characteristic triplet fine structures that repeat themselves for carbon chains of different lengths.

View Article and Find Full Text PDF

We demonstrate deterministic control of the nearest and next-nearest neighbor coupling in the unit cell of a square lattice of microcavity exciton-polariton condensates. We tune the coupling in a continuous and reversible manner by optically imprinting potential barriers of variable height, in the form of spatially localized incoherent exciton reservoirs that modify the particle flow between condensates. By controlling the couplings in a 2×2 polariton cluster, we realize ferromagnetic, antiferromagnetic, and paired ferromagnetic phases and demonstrate the potential scalability of the system.

View Article and Find Full Text PDF

Spin-orbit interactions lead to distinctive functionalities in photonic systems. They exploit the analogy between the quantum mechanical description of a complex electronic spin-orbit system and synthetic Hamiltonians derived for the propagation of electromagnetic waves in dedicated spatial structures. We realize an artificial Rashba-Dresselhaus spin-orbit interaction in a liquid crystal-filled optical cavity.

View Article and Find Full Text PDF

Polaritons are quasi-particles composed of a superposition of excitons and photons that can be created within a strongly coupled optical microcavity. Here, we describe a structure in which a strongly coupled microcavity containing an organic semiconductor is coupled to a second microcavity containing a series of weakly coupled inorganic quantum wells. We show that optical hybridisation occurs between the optical modes of the two cavities, creating a delocalised polaritonic state.

View Article and Find Full Text PDF