The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English.
View Article and Find Full Text PDFRare diseases (RD) have a prevalence of not more than 1/2000 persons in the European population, and are characterised by the difficulty experienced in obtaining a correct and timely diagnosis. According to Orphanet, 72.5% of RD have a genetic origin although 35% of them do not yet have an identified causative gene.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) mediate nearly every cellular process and represent attractive targets for modulating disease states but are challenging to target with small molecules. Despite this, several PPI inhibitors (iPPIs) have entered clinical trials, and a growing number of PPIs have become validated drug targets. However, high-throughput screening efforts still endure low hit rates mainly because of the use of unsuitable screening libraries.
View Article and Find Full Text PDFMotivation: Identification of small molecules that could be interesting starting points for drug discovery or to investigate a biological system as in chemical biology endeavours is both time consuming and costly. In silico approaches that assist the design of quality compound collections or help to prioritize molecules before synthesis or purchase are therefore valuable. Here quality refers to the selection of molecules that pass one or several selected filters that can be tuned by the users according to the project and the stage of the project.
View Article and Find Full Text PDFThe human ClC-Kb channel plays a key role in exporting chloride ions from the cytosol and is known to be involved in Bartter syndrome type 3 when its permeation capacity is decreased. The ClC-Kb channel has been recently proposed as a potential therapeutic target to treat hypertension. In order to gain new insights into the sequence-structure-function relationships of this channel, to investigate possible impacts of amino-acid substitutions, and to design novel inhibitors, we first built a structural model of the human ClC-Kb channel using comparative modeling strategies.
View Article and Find Full Text PDFThe modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess.
View Article and Find Full Text PDFIn order to boost the identification of low-molecular-weight drugs on protein-protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.
View Article and Find Full Text PDFDrug attrition late in preclinical or clinical development is a serious economic problem in the field of drug discovery. These problems can be linked, in part, to the quality of the compound collections used during the hit generation stage and to the selection of compounds undergoing optimization. Here, we present FAF-Drugs3, a web server that can be used for drug discovery and chemical biology projects to help in preparing compound libraries and to assist decision-making during the hit selection/lead optimization phase.
View Article and Find Full Text PDFOpen screening endeavors play and will play a key role to facilitate the identification of new bioactive compounds in order to foster innovation and to improve the effectiveness of chemical biology and drug discovery processes. In this line, we developed the new web server MTiOpenScreen dedicated to small molecule docking and virtual screening. It includes two services, MTiAutoDock and MTiOpenScreen, allowing performing docking into a user-defined binding site or blind docking using AutoDock 4.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) are carrying out diverse functions in living systems and are playing a major role in the health and disease states. Low molecular weight (LMW) "drug-like" inhibitors of PPIs would be very valuable not only to enhance our understanding over physiological processes but also for drug discovery endeavors. However, PPIs were deemed intractable by LMW chemicals during many years.
View Article and Find Full Text PDFSnyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity.
View Article and Find Full Text PDF[Formula: see text] Fundamental processes in living cells are largely controlled by macromolecular interactions and among them, protein-protein interactions (PPIs) have a critical role while their dysregulations can contribute to the pathogenesis of numerous diseases. Although PPIs were considered as attractive pharmaceutical targets already some years ago, they have been thus far largely unexploited for therapeutic interventions with low molecular weight compounds. Several limiting factors, from technological hurdles to conceptual barriers, are known, which, taken together, explain why research in this area has been relatively slow.
View Article and Find Full Text PDFDrug metabolizing enzymes play a key role in the metabolism, elimination and detoxification of xenobiotics, drugs and endogenous molecules. While their principal role is to detoxify organisms by modifying compounds, such as pollutants or drugs, for a rapid excretion, in some cases they render their substrates more toxic thereby inducing severe side effects and adverse drug reactions, or their inhibition can lead to drug-drug interactions. We focus on sulfotransferases (SULTs), a family of phase II metabolizing enzymes, acting on a large number of drugs and hormones and showing important structural flexibility.
View Article and Find Full Text PDFOnline resources enabling and supporting drug discovery have blossomed during the past ten years. However, drug hunters commonly find themselves overwhelmed by the proliferation of these computer-based resources. Ten years ago, we, the authors of this review, felt that a comprehensive list of in silico resources relating to drug discovery was needed.
View Article and Find Full Text PDFAqueous solubility is one of the most important ADMET properties to assess and to optimize during the drug discovery process. At present, accurate prediction of solubility remains very challenging and there is an important need of independent benchmarking of the existing in silico models such as to suggest solutions for their improvement. In this study, we developed a new protocol for improved solubility prediction by combining several existing models available in commercial or free software packages.
View Article and Find Full Text PDFProtein-protein interactions (PPI) are involved in vital cellular processes and are therefore associated to a growing number of diseases. But working with them as therapeutic targets comes with some major hurdles that require substantial mutations from our way to design drugs on historical targets such as enzymes and G-Protein Coupled Receptor (GPCR). Among the numerous ways we could improve our methodologies to maximize the potential of developing new chemical entities on PPI targets, is the fundamental question of what type of compounds should we use to identify the first hits and among which chemical space should we navigate to optimize them to the drug candidate stage.
View Article and Find Full Text PDFRecent advances in computational sciences enabled extensive use of in silico methods in projects at the interface between chemistry and biology. Among them virtual ligand screening, a modern set of approaches, facilitates hit identification and lead optimization in drug discovery programs. Most of these approaches require the preparation of the libraries containing small organic molecules to be screened or a refinement of the virtual screening results.
View Article and Find Full Text PDFIn the past decade, the spleen tyrosine kinase (Syk) has shown a high potential for the discovery of new treatments for inflammatory and autoimmune disorders. Pharmacological inhibitors of Syk catalytic site bearing therapeutic potential have been developed, with however limited specificity towards Syk. To address this topic, we opted for the design of drug-like compounds that could impede the interaction of Syk with its cellular partners while maintaining an active kinase protein.
View Article and Find Full Text PDFSummary: The FAF-Drugs2 server is a web application that prepares chemical compound libraries prior to virtual screening or that assists hit selection/lead optimization before chemical synthesis or ordering. The FAF-Drugs2 web server is an enhanced version of the FAF-Drugs2 package that now includes Pan Assay Interference Compounds detection. This online toolkit has been designed through a user-centered approach with emphasis on user-friendliness.
View Article and Find Full Text PDFExpert Opin Drug Discov
March 2011
Introduction: Drug discovery is a time consuming and costly process. Thus, a trend towards the use of in silico approaches such as structure- and ligand-based virtual screening methods to speed up the process has gained significant momentum in recent years. Most of these in silico applications require a good quality 3D structure of the small drug-like molecules as input.
View Article and Find Full Text PDFBackground: Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats.
View Article and Find Full Text PDFBackground: Virtual or in silico ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods.
View Article and Find Full Text PDFBackground: Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses) and as such, compound collections' property profiling can be performed in silico.
View Article and Find Full Text PDF