Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.
View Article and Find Full Text PDFNative mass spectrometry (MS) reveals the role of specific lipids in modulating membrane protein structure and function. Membrane proteins solubilized in detergents are often introduced into the mass spectrometer. However, detergents commonly used for structural studies, such as dodecylmaltoside, tend to generate highly charged ions, leading to protein unfolding, thereby diminishing their utility in characterizing protein-lipid interactions.
View Article and Find Full Text PDFRAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization.
View Article and Find Full Text PDFMany proteins form paralogous multimers - molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), a heterotetramer that evolved from a homodimeric ancestor after a gene duplication.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
August 2024
Transthyretin (TTR), a 56 kDa homotetramer that is involved in the transport of thyroxine and retinol, has been linked to amyloidosis through disassembly of tetramers to form monomers, dimers, and trimers that then reassemble into higher order oligomers and/or fibrils. Hybrid TTR (hTTR) tetramers are found in heterozygous individuals that express both wild type TTR (wt-TTR) and mutant TTR (mTTR) forms of the protein, and these states display increased rates of amyloidosis. Here we monitor subunit exchange (SUE) reactions involving homomeric and mixed tetramers using high resolution native mass spectrometry (nMS).
View Article and Find Full Text PDFThe ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood. Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5'-diphosphate (ADP).
View Article and Find Full Text PDFNative mass spectrometry (MS) is revealing the role of specific lipids in modulating membrane protein structure and function. Membrane proteins solubilized in detergents are often introduced into the mass spectrometer; however, commonly used detergents for structural studies, such as dodecylmaltoside, tend to generate highly charged ions, leading to protein unfolding, thereby diminishing their utility for characterizing protein-lipid interactions. Thus, there is a critical need to develop approaches to investigate protein-lipid interactions in different detergents.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
July 2024
TREK2, a two-pore domain potassium channel, is recognized for its regulation by various stimuli, including lipids. While previous members of the TREK subfamily, TREK1 and TRAAK, have been investigated to elucidate their lipid affinity and selectivity, TREK2 has not been similarly studied in this regard. Our findings indicate that while TRAAK and TREK2 exhibit similarities in terms of electrostatics and share an overall structural resemblance, there are notable distinctions in their interaction with lipids.
View Article and Find Full Text PDFMethods Mol Biol
April 2024
RAS is regulated by specific guanine nucleotide exchange factors, such as Son of Sevenless (SOS), that activates RAS by facilitating the exchange of inactive, GDP-bound RAS with GTP. The catalytic activity of SOS is known to be allosterically modulated by an active, GTP-bound RAS. However, it remains poorly understood how oncogenic RAS mutants interact with SOS and modulate its activity.
View Article and Find Full Text PDFMethods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, for example, so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces.
View Article and Find Full Text PDFAquaporin Z (AqpZ), a bacterial water channel, forms a tetrameric complex and, like many other membrane proteins, activity is regulated by lipids. Various methods have been developed to facilitate structure determination of membrane proteins, such as the use of antibodies. Here, we graft onto AqpZ the ALFA tag (AqpZ-ALFA), an alpha helical epitope, to make use of the high-affinity anti-ALFA nanobody (nB).
View Article and Find Full Text PDFThrough optimization of terminal frequencies and effective sampling rates, we have developed nonlinear sawtooth-shaped frequency sweeps for efficient Fourier transform ion mobility mass spectrometry (FT-IM-MS) experiments. This is in contrast to conventional FT-IM-MS experiments where ion gates are modulated according to a linear frequency sweep. Linear frequency sweeps are effective but can be hindered by the amount of useful signal obtained using a single sweep over a large frequency range imposed by ion gating inefficiencies, particularly small ion packets, and gate depletion.
View Article and Find Full Text PDFStructural and functional studies of the ATP-binding cassette transporter MsbA have revealed two distinct lipopolysaccharide (LPS) binding sites: one located in the central cavity and the other at a membrane-facing, exterior site. Although these binding sites are known to be important for MsbA function, the thermodynamic basis for these specific MsbA-LPS interactions is not well understood. Here, we use native mass spectrometry to determine the thermodynamics of MsbA interacting with the LPS-precursor 3-deoxy-D--oct-2-ulosonic acid (Kdo)-lipid A (KDL).
View Article and Find Full Text PDFPendrin (SLC26A4) is an anion exchanger that mediates bicarbonate (HCO) exchange for chloride (Cl) and is crucial for maintaining pH and salt homeostasis in the kidney, lung, and cochlea. Pendrin also exports iodide (I) in the thyroid gland. Pendrin mutations in humans lead to Pendred syndrome, causing hearing loss and goiter.
View Article and Find Full Text PDFCellular membranes are critical to the function of membrane proteins, whether they are associated (peripheral) or embedded (integral) within the bilayer. While detergents have contributed to our understanding of membrane protein structure and function, there remains challenges in characterizing protein-lipid interactions within the context of an intact membrane. Here, we developed a method to prepare proteoliposomes for native mass spectrometry (MS) studies.
View Article and Find Full Text PDFMethods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, , so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces.
View Article and Find Full Text PDFChymotrypsin inhibitor 2 (CI-2) is a well-studied, textbook example of a cooperative, two-state, native ↔ denatured folding transition. A recent hybrid ion mobility spectrometry (IMS)/mass spectrometry (MS) thermal denaturation study of CI-2 (the well-studied truncated 64-residue model) in water reported evidence that this two-state transition involves numerous (∼41) unique native and non-native (denatured) solution conformations. The characterization of so many, often low-abundance, states is possible because of the very high dynamic range of IMS-MS measurements of ionic species that are produced upon electrospraying CI-2 solutions from a variable temperature electrospray ionization source.
View Article and Find Full Text PDFThe ATP-binding cassette (ABC) transporter ABCB10 resides in the inner membrane of mitochondria and is implicated in erythropoiesis. Mitochondria from different cell types share some specific characteristics, one of which is the high abundance of cardiolipin. Although previous studies have provided insight into ABCB10, the affinity and selectivity of this transporter toward lipids, particularly those found in the mitochondria, remain poorly understood.
View Article and Find Full Text PDFNative mass spectrometry (MS) is a powerful technique for interrogating membrane protein complexes and their interactions with other molecules. A key aspect of the technique is the ability to preserve native-like structures and noncovalent interactions, which can be challenging depending on the choice of detergent. Different strategies have been employed to reduce charge on protein complexes to minimize activation and preserve non-covalent interactions.
View Article and Find Full Text PDFWhile it is known that lipids play an essential role in regulating membrane protein structure and function, it remains challenging to identify specific protein-lipid interactions. Here, we present an innovative approach that combines native mass spectrometry (MS) and lipidomics to identify lipids retained by membrane proteins from natural lipid extracts. Our results reveal that the bacterial ammonia channel (AmtB) enriches specific cardiolipin (CDL) and phosphatidylethanolamine (PE) from natural headgroup extracts.
View Article and Find Full Text PDFRas proteins in the mitogen-activated protein kinase (MAPK) signaling pathway represent one of the most frequently mutated oncogenes in cancer. Ras binds guanosine nucleotides and cycles between active (GTP) and inactive (GDP) conformations to regulate the MAPK signaling pathway. Guanosine and other nucleotides exist in cells as either 2'-hydroxy or 2'-deoxy forms, and imbalances in the deoxyribonucleotide triphosphate pool have been associated with different diseases, such as diabetes, obesity, and cancer.
View Article and Find Full Text PDFStructural and functional studies of the ATP-binding cassette transporter MsbA have revealed two distinct lipopolysaccharide (LPS) binding sites: one located in the central cavity and the other at a membrane-facing, exterior site. Although these binding sites are known to be important for MsbA function, the thermodynamic basis for these specific MsbA-LPS interactions is not well understood. Here, we use native mass spectrometry to determine the thermodynamics of MsbA interacting with the LPS-precursor 3-deoxy-D--oct-2-ulosonic acid (Kdo)-lipid A (KDL).
View Article and Find Full Text PDFHomologs of the protein Get3 have been identified in all domains yet remain to be fully characterized. In the eukaryotic cytoplasm, Get3 delivers tail-anchored (TA) integral membrane proteins, defined by a single transmembrane helix at their C terminus, to the endoplasmic reticulum. While most eukaryotes have a single Get3 gene, plants are notable for having multiple Get3 paralogs.
View Article and Find Full Text PDFVariable-temperature electrospray ionization (vT-ESI) native mass spectrometry (nMS) is used to determine the thermodynamics for stepwise binding of up to 14 ATP molecules to the 801 kDa GroEL tetradecamer chaperonin complex. Detailed analysis reveals strong enthalpy-entropy compensation (EEC) for the ATP binding events leading to formation of GroEL-ATP and GroEL-ATP complexes. The observed variations in EEC and stepwise free energy changes of specific ATP binding are consistent with the well-established nested cooperativity model describing GroEL-ATP interactions, , intraring positive cooperativity and inter-ring negative cooperativity (Dyachenko A.
View Article and Find Full Text PDF