This article extends the findings of our previous research "Preliminary reconstruction of climate changes and vegetation cover inferred from pollen study of the arctic lake bottom sediments from the southwestern part of the Yamal Peninsula" (G.R. Nigamatzyanova, N.
View Article and Find Full Text PDFThe development of an automatic method of identifying microplastic particles within live cells and organisms is crucial for high-throughput analysis of their biodistribution in toxicity studies. State-of-the-art technique in the data analysis tasks is the application of deep learning algorithms. Here, we propose the approach of polystyrene microparticle classification differing only in pigmentation using enhanced dark-field microscopy and a residual neural network (ResNet).
View Article and Find Full Text PDFHalloysite is a promising building block in nanoarchitectonics of functional materials, especially in the development of novel biomaterials and smart coatings. Understanding the behavior of materials produced using halloysite nanotubes within living organisms is essential for their safe applications. In this study, quantum dots of different compositions were synthesized on the surface of modified clay nanotubes, and the biodistribution of this hybrid material was monitored within nematodes.
View Article and Find Full Text PDFWe present the presence/absence species list (Table 1) of rotifer, cladoceran, and copepod (Calanoida, Harpacticoida, and Cyclopoida) fauna from seven Arctic regions of Russia (the Kola Peninsula, the Pechora River Delta, the Bolshezemelskaya tundra, the Polar Ural, the Putorana Plateau, the Lena River Delta, and the Indigirka River Basin) based on our own and literature data. Our own records were obtained by analyzing samples of zooplankton, meiobenthos, and two cores of bottom sediments (from the Kola Peninsula and the Bolshezemelskaya tundra lakes) that we collected once in July or August in 1992, 1995-2017. To supplement the list, we used relevant literature with periods of research from the 1960s to the 2010s.
View Article and Find Full Text PDFFly ash produced during coal combustion is one of the major sources of air and water pollution, but the data on the impact of micrometer-size fly ash particles on human cells is still incomplete. Fly ash samples were collected from several electric power stations in the United States (Rockdale, TX; Dolet Hill, Mansfield, LA; Rockport, IN; Muskogee, OK) and from a metallurgic plant located in the Russian Federation (Chelyabinsk Electro-Metallurgical Works OJSC). The particles were characterized using dynamic light scattering, atomic force, and hyperspectral microscopy.
View Article and Find Full Text PDFNanoscale contaminants (including engineered nanoparticles and nanoplastics) pose a significant threat to organisms and environment. Rapid and non-destructive detection and identification of nanosized materials in cells, tissues and organisms is still challenging, although a number of conventional methods exist. These approaches for nanoparticles imaging and characterisation both inside the cytoplasm and on the cell or tissue outer surfaces, such as electron or scanning probe microscopies, are unquestionably potent tools, having excellent resolution and supplemented with chemical analysis capabilities.
View Article and Find Full Text PDFMicroplastics pollution is a serious ecological threat, severely affecting environments and human health. Tackling microplastics pollution requires an effective methodology to detect minute polymer particles in environmental samples and organisms. Here were report a novel methodology to visualise and identify nanoscale (down to 100 nm) and microscale synthetic commercially-available uniform spherical polymer particles using dark-field hyperspectral microscopy in visible-near infrared (400-1000 nm) wavelength range.
View Article and Find Full Text PDFThe environmental hazards of oil spills cannot be underestimated. Bioremediation holds promise among various approaches to tackle oil spills in soils and sediments. In particular, using oil-degrading bacteria is an efficient and self-regulating way to remove oil spills.
View Article and Find Full Text PDFComplexation of biopolymers with halloysite nanotubes (HNTs) can greatly affect their applicability as materials building blocks. Here we have performed a systematic investigation of fabrication of halloysite nanotubes complexes with nucleotides and genomic DNA. The binding of DNA and various nucleotide species (polyAU, UMP Na, ADP Na, dATP Na, AMP, uridine, ATP Mg) by halloysite nanotubes was tested using UV-spectroscopy.
View Article and Find Full Text PDFProdigiosin, a bioactive secondary metabolite produced by , is an effective proapoptotic agent against various cancer cell lines, with little or no toxicity toward normal cells. The hydrophobicity of prodigiosin limits its use for medical and biotechnological applications, these limitations, however, can be overcome by using nanoscale drug carriers, resulting in promising formulations for target delivery systems with great potential for anticancer therapy. Here we report on prodigiosin-loaded halloysite-based nanoformulation and its effects on viability of malignant and non-malignant cells.
View Article and Find Full Text PDFThe development of novel nanoscale vehicles for drug delivery promotes the growth of interest in investigations of interaction between nanomaterials. In this paper, we report the studies of eukaryotic cell physiological response to incubation with graphene oxide and planar kaolin nanoclay. Graphene family materials, including graphene oxide (GO), hold promise for numerous applications due to their unique electronic properties.
View Article and Find Full Text PDF