One major limitation for the vascularization of bone substitutes used for filling is the presence of mineral blocks. The newly-formed blood vessels are stopped or have to circumvent the mineral blocks, resulting in inefficient delivery of oxygen and nutrients to the implant. This leads to necrosis within the implant and to poor engraftment of the bone substitute.
View Article and Find Full Text PDFFunctional articular cartilage regeneration remains challenging, and it is essential to restore focal osteochondral defects and prevent secondary osteoarthritis. Combining autologous stem cells with therapeutic medical device, we developed a bi-compartmented implant that could promote both articular cartilage and subchondral bone regeneration. The first compartment based on therapeutic collagen associated with bone morphogenetic protein 2, provides structural support and promotes subchondral bone regeneration.
View Article and Find Full Text PDFThe extended life expectancy and the raise of accidental trauma call for an increase of osteoarticular surgical procedures. Arthroplasty, the main clinical option to treat osteoarticular lesions, has limitations and drawbacks. In this manuscript, we test the preclinical safety of the innovative implant ARTiCAR for the treatment of osteoarticular lesions.
View Article and Find Full Text PDFPorphyromonas gingivalis-induced inflammatory effects are mostly investigated in monolayer cultured cells. The aim of this study was to develop a 3D spheroid model of gingiva to take into account epithelio-fibroblastic interactions. Human gingival epithelial cells (ECs) and human oral fibroblasts (FBs) were cultured by hanging drop method to generate 3D microtissue (MT) whose structure was analyzed on histological sections and the cell-to-cell interactions were observed by scanning and transmission electron microscopy (SEM and TEM).
View Article and Find Full Text PDFBone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes.
View Article and Find Full Text PDFIbuprofen (IBU) has been shown to improve periodontal treatment outcomes. The aim of this study was to develop a new anti-inflammatory scaffold by functionalizing an electrospun nanofibrous poly-ε-caprolactone membrane with IBU (IBU-PCL) and to evaluate its impact on periodontal inflammation, wound healing and regeneration in vitro and in vivo. IBU-PCL was synthesized through electrospinning.
View Article and Find Full Text PDFThe sensory innervation of the dental pulp is essential for tooth function and protection. It is mediated by axons originating from the trigeminal ganglia and is spatio-temporally regulated. We have previously shown that the innervation of bioengineered teeth can be achieved only under immunosuppressive conditions.
View Article and Find Full Text PDFThe temporomandibular joint (TMJ) is an articulation formed between the temporal bone and the mandibular condyle which is commonly affected. These affections are often so painful during fundamental oral activities that patients have lower quality of life. Limitations of therapeutics for severe TMJ diseases have led to increased interest in regenerative strategies combining stem cells, implantable scaffolds and well-targeting bioactive molecules.
View Article and Find Full Text PDFAim: We developed polymeric membranes for local administration of nonsoluble anti-inflammatory statin, as potential wound patch in rheumatic joint or periodontal lesions.
Methods: Electrospun polycaprolactone membranes were fitted with polysaccharide-atorvastatin nanoreservoirs by using complexes with poly-aminocyclodextrin. Characterization methods are UV-Visible and X-ray photoelectron spectroscopy, molecular dynamics, scanning and transmission electron microscopy.
The time needed to obtain functional regenerated bone tissue depends on the existence of a reliable vascular support. Current techniques used in clinic, for example after tooth extraction, do not allow regaining or preserving the same bone volume. Our aim is to develop a cellularized active implant of the third generation, equipped with human mesenchymal stem cells to improve the quality of implant vascularization.
View Article and Find Full Text PDFIn tissue engineering, it is still rare today to see clinically transferable strategies for tissue-engineered graft production that conclusively offer better tissue regeneration than the already existing technologies, decreased recovery times, and less risk of complications. Here a novel tissue-engineering concept is presented for the production of living bone implants combining 1) a nanofibrous and microporous implant as cell colonization matrix and 2) 3D bone cell spheroids. This combination, double 3D implants, shows clinical relevant thicknesses for the treatment of an early stage of bone lesions before the need of bone substitutes.
View Article and Find Full Text PDFWe present an experimental method allowing the production of three-dimensional organ-like structures, namely microtissues (MTs), in vitro without the need for exogenous extracellular matrix (ECM) or growth factors. Submandibular salivary glands (embryonic day ED14), kidneys (ED13) and lungs (ED13) were harvested from mouse embryos and dissociated into single cells by enzyme treatment. Single cells were seeded into special hanging drop culture plates (InSphero) and cultured for up to 14 days to obtain MTs.
View Article and Find Full Text PDFAim: Success of functional vascularized tissue repair depends on vascular support system supply and still remains challenging. Our objective was to develop a nanoactive implant enhancing endothelial cell activity, particularly for bone tissue engineering in the regenerative medicine field.
Materials & Methods: We developed a new strategy of tridimensional implant based on cell-dependent sustained release of VEGF nanoparticles.
Here we explore a new generation of smart, living implants, combining not only active therapeutics but also stem cells, as a novel strategy to regenerate stabilised cartilage and avoid prostheses. This process can regenerate the subchondral bone foundation, which is currently difficult in the clinic.
View Article and Find Full Text PDFMaterials (Basel)
November 2015
The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices.
View Article and Find Full Text PDFAlpha-melanocyte stimulating hormone (α-MSH) is involved in normal skin wound healing and also has anti-inflammatory properties. The association of α-MSH to polyelectrolyte layers with various supports has been shown to improve these anti-inflammatory properties. This study aimed to evaluate the effects of nanofibrous membrane functionalized with α-MSH linked to polyelectrolyte layers on gingival cell inflammatory response.
View Article and Find Full Text PDFA new generation of biomaterials focus on smart materials incorporating cells. Here, we describe a novel generation of synthetic nanofibrous implant functionalized with living microtissues for regenerative nanomedicine. The strategy designed here enhances the effectiveness of therapeutic implants compared to current approaches used in the clinic today based on single cells added to the implant.
View Article and Find Full Text PDFAim: Articular cartilage repair remains challenging, because most clinical failures are due to the lack of subchondral bone regeneration. We report an innovative approach improving cartilage repair by regenerating a robust subchondral bone, supporting articular cartilage.
Materials & Methods: We developed a compartmented living implant containing triple-3D structure: stem cells as microtissues for embryonic endochondral development mimic, nanofibrous collagen to enhance mineralization for subchondral bone and alginate hydrogel for cartilage regeneration.
Aims: Mesenchymal stem cells (MSCs) from adult bone marrow provide an exciting and promising stem cell population for the repair of bone in skeletal diseases. Here, we describe a new generation of collagen nanofiber implant functionalized with growth factor BMP-7 nanoreservoirs and equipped with human MSC microtissues (MTs) for regenerative nanomedicine.
Materials & Methods: By using a 3D nanofibrous collagen membrane and by adding MTs rather than single cells, we optimize the microenvironment for cell colonization, differentiation and growth.
New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs.
View Article and Find Full Text PDFDesigning unique nanostructured biomimetic materials is a new challenge in modern regenerative medicine. In order to develop functional substitutes for damaged organs or tissues, several methods have been used to create implants able to regenerate robust and durable bone. Electrospinning produces nonwoven scaffolds based on polymer nanofibers mimicking the fibrillar organization of bone extracellular matrix.
View Article and Find Full Text PDFStem cells are capable of renewing themselves through cell division and have the remarkable ability to differentiate into many different types of cells. They therefore have the potential to become a central tool in regenerative medicine. During the last decade, advances in tissue engineering and stem cell-based tooth regeneration have provided realistic and attractive means of replacing lost or damaged teeth.
View Article and Find Full Text PDFThe sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice.
View Article and Find Full Text PDFImplants triggering rapid, robust and durable tissue regeneration are needed to shorten recovery times and decrease risks of postoperative complications for patients. Here, we describe active living collagen implants with highly promising bone regenerative properties. Bioactivity of the implants is obtained through the protective and stabilizing layer-by-layer immobilization of a protein growth factor in association with a polysaccharide (chitosan), within the form of nanocontainers decorating the collagen nanofibers.
View Article and Find Full Text PDFCurrent strategies for jaw reconstruction require multiple procedures, to repair the bone defect, to offer sufficient support, and to place the tooth implant. The entire procedure can be painful and time-consuming, and the desired functional repair can be achieved only when both steps are successful. The ability to engineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes and also reduce patient suffering.
View Article and Find Full Text PDF