Publications by authors named "Laetitia Fraysse"

Carbonylation is currently used as a marker for irreversible protein oxidative damage. Several studies indicate that carbonylated proteins are more prone to degradation than their nonoxidized counterparts. In this study, we observed that in Escherichia coli, more than 95% of the total carbonyl content consisted of insoluble protein and most were cytosolic proteins.

View Article and Find Full Text PDF

Protein aggregation is a phenomenon observed in all organisms and has often been linked with cell disorders. In addition, several groups have reported a virtual absence of protein aggregates in healthy cells. In contrast to previous studies and the expected outcome, we observed aggregated proteins in aerobic exponentially growing and "healthy" Escherichia coli cells.

View Article and Find Full Text PDF

In previous experiments we were able to separate, using a nondestructive separation technique, culturable and nonculturable bacteria, from a Luria-Bertani (LB) medium culture of Escherichia coli incubated for 48 h. We observed in the nonculturable bacterial population an increase in oxidative damage and up-induction of most defenses against reactive oxygen species (ROS), along with a decrease in cytoplasmic superoxide dismutases. In this study, using the same separation technique, we separated into two subpopulations a 10-h LB medium culture containing only culturable bacteria.

View Article and Find Full Text PDF

In Bacillus subtilis, carbon catabolite repression (CCR) of catabolic genes is mediated by ATP-dependent phosphorylation of HPr and Crh. Here we show that the different efficiencies with which these two proteins contribute to CCR may be due to the drastic differences in their synthesis rates under conditions that cause CCR.

View Article and Find Full Text PDF