The Biochemistry Department at the University of Geneva currently has four full professors, a professor emeritus, one assistant professor, two MER (Maître d'enseignement et de Recherche) and a permanent scientific collaborator. The research interests of the members of the Biochemistry Department are described.
View Article and Find Full Text PDFThe anchor-away (AA) technique depletes the nucleus of Saccharomyces cerevisiae of a protein of interest (the target) by conditional tethering to an abundant cytoplasmic protein (the anchor) by appropriate gene tagging and rapamycin-dependent heterodimerization. Taking advantage of the massive flow of ribosomal proteins through the nucleus during maturation, a protein of the large subunit was chosen as the anchor. Addition of rapamycin, due to formation of the ternary complex, composed of the anchor, rapamycin, and the target, then results in the rapid depletion of the target from the nucleus.
View Article and Find Full Text PDFThe functions of DNA satellites of centric heterochromatin are difficult to assess with classical molecular biology tools. Using a chemical approach, we demonstrate that synthetic polyamides that specifically target AT-rich satellite repeats of Drosophila melanogaster can be used to study the function of these sequences. The P9 polyamide, which binds the X-chromosome 1.
View Article and Find Full Text PDFOur previous work identified the inner basket of the NPC as a physical activation/protection station for force-tethered, epigenetically silenced genes. Here we show that a specific nucleopore-to-gene-promoter interaction (Nup-PI) is an early physiological event of gene activation. Nup-PI was discovered with chromatin endogenous cleavage (ChEC) experiments that mapped in vivo the genomic interaction sites of the nucleoporin Nup2p fused to microccocal nuclease (Nup2-MN).
View Article and Find Full Text PDFTo structurally dissect mitotic chromosomes, we aim to position along the folded chromatin fiber proteins involved in long-range order, such as topoisomerase IIalpha (topoIIalpha) and condensin. Immuno-electron microscopy (EM) of thin-sectioned chromosomes is the method of choice toward this goal. A much-improved immunoprocedure that avoids problems associated with aldehyde fixation, such as chemical translinking and networking of chromatin fibers, is reported here.
View Article and Find Full Text PDFTo map the genomic interaction sites of chromatin proteins, two related methods were developed and experimentally explored in Saccharomyces cerevisiae. The ChIC method (chromatin immunocleavage) consists of tethering a fusion protein (pA-MN) consisting of micrococcal nuclease (MN) and staphylococcal protein A to specifically bound antibodies. The nuclease is kept inactive during the tethering process (no Ca2+).
View Article and Find Full Text PDFTopoisomerase IIalpha (topoIIalpha) and 13S condensin are both required for mitotic chromosome assembly. Here we show that they constitute the two main components of the chromosomal scaffold on histone-depleted chromosomes. The structural stability and chromosomal shape of the scaffolding toward harsh extraction procedures are shown to be mediated by ATP or its nonhydrolyzable analogs, but not ADP.
View Article and Find Full Text PDFDrosophila and mammalian proteins protect genes from heterochromatic repression in Saccharomyces cerevisiae by two different mechanisms. Factors termed genuine boundary activities (BAs) establish a structural, unidirectional bulwark against heterochromatin. In contrast, factors termed desilencing activities (DAs) act by the formation of a bidirectional, euchromatic island that blocks spreading of heterochromatin.
View Article and Find Full Text PDFThe insulating properties required to delimit higher-order chromosomal domains have been shown to be shared by a variety of chromatin boundary elements (BEs). Boundary elements have been described in several species, from yeast to human, and we have previously reported the existence of a class of chromatin BEs in Drosophila melanogaster whose insulating activity requires the DNA-binding protein BEAF (boundary element-associated factor). Here we focus on the characterization of a moderately repeated 1.
View Article and Find Full Text PDFChromatin boundary activities (BAs) were identified in Saccharomyces cerevisiae by genetic screening. Such BAs bound to sites flanking a reporter gene establish a nonsilenced domain within the silent mating-type locus HML. Interestingly, various proteins involved in nuclear-cytoplasmic traffic, such as exportins Cse1p, Mex67p, and Los1p, exhibit a robust BA.
View Article and Find Full Text PDFWe have analyzed the expression pattern of the D1 gene and the localization of its product, the AT hook-bearing nonhistone chromosomal protein D1, during Drosophila melanogaster development. D1 mRNAs and protein are maternally contributed, and the protein localizes to discrete foci on the chromosomes of early embryos. These foci correspond to 1.
View Article and Find Full Text PDFDNA minor groove-binding compounds (polyamides) that target insect and vertebrate telomeric repeats with high specificity were synthesized. Base pair recognition of these polyamides is based on the presence of the heterocyclic amino acids pyrrole and imidazole. One compound (TH52B) interacts uniquely and with excellent specificity (K(d) = 0.
View Article and Find Full Text PDFDNA-binding pyrrole-imidazole compounds were synthesized that target different Drosophila melanogaster satellites. Compound P31 specifically binds the GAGAA satellite V, and P9 targets the AT-rich satellites I and III. Remarkably, these drugs, when fed to developing Drosophila flies, caused gain- or loss-of-function phenotypes.
View Article and Find Full Text PDFThere are few tools available for dissecting and elucidating the functions of DNA satellites and other nongenic DNA. To address this, we have explored the experimental potential of DNA sequence-specific drugs containing pyrrole and imidazole amino acids (polyamides). Compounds were synthesized that target different Drosophila melanogaster satellites.
View Article and Find Full Text PDFBoundary elements interfere with communication between enhancers and promoters, but only when interposed. Understanding this activity will require identifying the proteins involved. The boundary element-associated factor BEAF is one protein that is implicated in boundary element function.
View Article and Find Full Text PDFReplication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding protein that is essential for general DNA metabolism. RPA consists of three subunits (70, 33 and 14 kDa). We have identified by two-hybrid screening a novel Xenopus protein called XRIPalpha that interacts with the ssDNA-binding domain of the largest subunit of RPA.
View Article and Find Full Text PDFBoundary elements are thought to define the ends of functionally independent domains of genetic activity. An assay for boundary activity based on this concept measures the ability to insulate a bracketed, chromosomally integrated reporter gene from position effects. Despite their presumed importance, the few examples identified to date apparently do not share sequence motifs or DNA binding proteins.
View Article and Find Full Text PDFMetaphase chromosome condensation is a dynamic process that must utilize cis elements to form and maintain the final structure. Likewise, cis elements must regulate the accessibility of chromatin domains to protein machines involved in processes such as transcription. Scaffold associated regions appear to play important roles in both of these dynamic processes.
View Article and Find Full Text PDFScaffold-associated regions (SARs) were studied in Drosophila melanogaster by expressing a synthetic, high-affinity SAR-binding protein called MATH (multi-AT-hook), which consists of reiterated AT-hook peptide motifs; each motif is known to recognize a wide variety of short AT-rich sequences. MATH proteins were expressed specifically in the larval eye imaginal discs by means of the tetracycline-regulated transactivation system and tested for their effect on position effect variegation (PEV). MATH20, a highly potent SAR ligand consisting of 20 AT-hooks, was found to suppress whitemottled 4 variegation.
View Article and Find Full Text PDFMol Cell Biol
February 1997
Boundary elements are thought to define the peripheries of chromatin domains and to restrict enhancer-promoter interactions to their target genes within their domains. We previously characterized a cDNA encoding the BEAF-32A protein (32A), which binds with high affinity to the scs' boundary element from the Drosophila melanogaster 87A7 hsp70 locus. Here, we report a second protein, BEAF-32B, that differs from 32A only in its amino terminus.
View Article and Find Full Text PDFCurr Opin Cell Biol
June 1996
Curr Opin Cell Biol
June 1996
SARs are candidate DNA elements for defining the bases of chromatin loops and possibly for serving as cis elements of chromosome dynamics. SARs contain numerous A tracts, whose altered DNA structure is recognized by cooperatively interacting proteins such as topoisomerase II. We constructed multi-AT hook (MATH) proteins and demonstrate that they specifically bind the clustered A tracts of SARs in chromatin and chromosomes.
View Article and Find Full Text PDFWe have purified two proteins from Drosophila that bind to the scs' boundary element of the hsp70 domain at locus 87A7. Their palindromic binding sites (CGATA-TATCG) symmetrically abut the previously mapped hypersensitive site of scs'. We have cloned a cDNA for one of these proteins, BEAF-32 (boundary element-associated factor of 32 kDa).
View Article and Find Full Text PDFNucleic Acids Res
October 1994
Two minimal scaffold-associated regions (SARs) from Drosophila were tested in stably transformed cells for their effects on the expression of reporter genes. The expression of genes bounded by two SARs is consistently stimulated by about 20- to 40-fold, if the average of a pool of cell transformants is analyzed. However, analysis of individual, stable cell transformants demonstrates that flanking SAR elements do not confer position-independent expression on the reporter gene and that the extent of position-dependent variegation is similarly large with or without the flanking SAR elements.
View Article and Find Full Text PDF