Prostate cancer is the most frequently diagnosed cancer in men and often requires surgery. Use of near infrared (NIR) technologies to perform image-guided surgery may improve accurate delineation of tumor margins. To facilitate preclinical testing of such outcomes, here we developed and characterized a PSMA-targeted small molecule, YC-27.
View Article and Find Full Text PDFInvasive and biomaterial-associated infections in humans are often difficult to diagnose and treat. Here, guided by recent advances in clinically relevant optical imaging technologies, we explore the use of fluorescently labelled vancomycin (vanco-800CW) to specifically target and detect infections caused by Gram-positive bacteria. The application potential of vanco-800CW for real-time in vivo imaging of bacterial infections is assessed in a mouse myositis model and a human post-mortem implant model.
View Article and Find Full Text PDFAberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers. EGFR variant III (EGFRvIII) is a common in-frame deletion mutant, which lacks a large part of the extracellular portion (exons 2-7), including components of the ligand-binding domain. Although EGFR has been extensively studied as a molecular imaging target, information about EGFRvIII-targeted molecular imaging is lacking.
View Article and Find Full Text PDFIn this study, we applied tyramide signal amplification (TSA) to fluorescence enzyme-linked immunosorbent assay (ELISA) employing horseradish peroxidase (HRP) as the detection enzyme. When used with a human epidermal growth factor ELISA kit, the TSA method led to a >100-fold increase in fluorescence signal intensity in comparison to an unamplified method. It also showed wider dynamic range and better sensitivity compared to a conventional method using tetramethylbenzidine as the HRP substrate.
View Article and Find Full Text PDFFluorescence in the near-infrared (NIR) spectral region is suitable for in vivo imaging due to its reduced background and high penetration capability compared to visible fluorescence. SNAP(f) is a fast-labeling variant of SNAP-tag that reacts with a fluorescent dye-conjugated benzylguanine (BG) substrate, leading to covalent attachment of the fluorescent dye to the SNAP(f). This property makes SNAP(f) a valuable tool for fluorescence imaging.
View Article and Find Full Text PDFThe synthesis and absolute configuration of SCH 351448, an interesting ionophoric natural product, are reported herein. Mukaiyama aldol-Prins and segment-coupling Prins reactions were employed to construct the constituent tetrahydropyrans of SCH 351448. Efforts to assemble the C2-symmetric core of the natural product by a templated olefin metathesis strategy are described; however, a stepwise fragment assembly was ultimately utilized to complete the target molecule.
View Article and Find Full Text PDF