A significant component of the repetitive dynamics during locomotion in vertebrates is generated within the spinal cord. The legged locomotion of mammals is most likely controled by a hierarchical, multi-layer spinal network structure, while the axial circuitry generating the undulatory swimming motion of animals like lamprey is thought to have only a single layer in each segment. Recent experiments have suggested a hybrid network structure in zebrafish larvae in which two types of excitatory interneurons (V2a-I and V2a-II) both make first-order connections to the brain and last-order connections to the motor pool.
View Article and Find Full Text PDFWe use a dynamical systems model of the hypothalamic-pituitary-adrenal (HPA) axis to understand the mechanisms underlying clinical protocols used to probe patient stress response. Specifically, we address dexamethasone (DEX) and ACTH challenge tests, which probe pituitary and adrenal gland responses, respectively. We show that some previously observed features and experimental responses can arise from a bistable mathematical model containing two steady-states, rather than relying on specific and permanent parameter changes due to physiological disruption.
View Article and Find Full Text PDF