Int J Nanomedicine
September 2022
Purpose: Titanium dioxide nanoparticles, 25 nm in size of crystallites (TiO P25), are among the most produced nanomaterials worldwide. The broad use of TiO P25 in material science has implied a request to evaluate their biological effects, especially in the lungs. Hence, the pulmonary A549 cell line has been used to estimate the effects of TiO P25.
View Article and Find Full Text PDFGraphene and its derivatives are popular nanomaterials used worldwide in many technical fields and biomedical applications. Due to such massive use, their anticipated accumulation in the environment is inevitable, with a largely unknown chronic influence on living organisms. Although repeatedly tested in chronic in vivo studies, long-term cell culture experiments that explain the biological response to these nanomaterials are still scarce.
View Article and Find Full Text PDFInositol hexaphosphate (IP6), also known as phytic acid, has been shown to exhibit anticancer effects in a number of preclinical tumor models. IP6 decreases proliferation by arresting cells in the G0/G1 phase, inhibits iron-mediated oxidative reactions, enhances differentiation and stimulates apoptosis. The present study attempted to characterize the effect of IP6 on the migration and adhesion of colon cancer SW620 cells.
View Article and Find Full Text PDFA number of cytotoxicity assays are currently available, each of them using specific approach to detect different aspects of cell viability, such as cell integrity, proliferation and metabolic functions. In this study we compared the potential of five commonly employed cytotoxicity assays (WST-1, XTT, MTT, Brilliant blue and Neutral red assay) to detect antiproliferative effects of three selenium compounds, sodium selenite, seleno-L-methionine (SeMet) and Se-(Methyl)selenocysteine (SeMCys) on three colorectal cancer cell lines in vitro. Cells were exposed to the selected selenium compounds in the concentration range of 0-256 microM during 48 h.
View Article and Find Full Text PDFThe use of anthracycline anticancer drugs is limited by a cumulative, dose-dependent cardiac toxicity. Iron chelation has long been considered as a promising strategy to limit this unfavorable side effect, either by restoring the disturbed cellular iron homeostasis or by removing redox-active iron, which may promote anthracycline-induced oxidative stress. Aroylhydrazone lipophilic iron chelators have shown promising results in the rabbit model of daunorubicin-induced cardiomyopathy as well as in cellular models.
View Article and Find Full Text PDFExposure to hexavalent chromium causes various adverse effects including deep skin ulcerations and allergic dermatitis. Because of many potential intracellular targets for hexavalent chromium toxicity, its mechanisms of action are not entirely understood. To investigate the role of the cytoskeleton and mitochondria in this process, primary human dermal fibroblasts were exposed to various concentrations of potassium chromate for 24 h.
View Article and Find Full Text PDFBackground: Flobufen (F) is an original nonsteroidal anti-inflammatory drug with one center of chirality. 4-Dihydroflobufen (DHF), compound with two chiral centers, is the main metabolite of F in microsomes and cytosol in all standard laboratory animals. This work describes the biotransformation of F enantiomers and DHF stereoisomers in isolated male guinea pig hepatocytes.
View Article and Find Full Text PDF