Artificial neural networks can solve various tasks in computer vision, such as image classification, object detection, and general recognition. Our comparative study deals with four types of artificial neural networks-multilayer perceptrons, probabilistic neural networks, radial basis function neural networks, and convolutional neural networks-and investigates their ability to classify 2D matrix codes (Data Matrix codes, QR codes, and Aztec codes) as well as their rotation. The paper presents the basic building blocks of these artificial neural networks and their architecture and compares the classification accuracy of 2D matrix codes under different configurations of these neural networks.
View Article and Find Full Text PDFWe provide a comprehensive and in-depth overview of the various approaches applicable to the recognition of Data Matrix codes in arbitrary images. All presented methods use the typical "L" shaped Finder Pattern to locate the Data Matrix code in the image. Well-known image processing techniques such as edge detection, adaptive thresholding, or connected component labeling are used to identify the Finder Pattern.
View Article and Find Full Text PDFQR (quick response) Codes are one of the most popular types of two-dimensional (2D) matrix codes currently used in a wide variety of fields. Two-dimensional matrix codes, compared to 1D bar codes, can encode significantly more data in the same area. We have compared algorithms capable of localizing multiple QR Codes in an image using typical finder patterns, which are present in three corners of a QR Code.
View Article and Find Full Text PDF