Publications by authors named "Ladisch M"

An additional 100 million tons/year of lignin coproduct will result when lignocellulosic biomass is processed in biorefineries to fiber, sugars, biofuels, and bioproducts. This will double the amount of lignin already generated from pulping and paper production. Unlike pulping that results in lignosulphonate (88% of total) or Kraft lignin (9%), aqueous-based biorefining leaves behind non-sulfonated lignin and aromatic molecules.

View Article and Find Full Text PDF

Subcutaneous (SC) injection of protein-based therapeutics is a convenient and clinically established drug delivery method. However, progress is needed to increase the bioavailability. Transport of low molecular weight () biotherapeutics such as insulin and small molecule contrast agents such as lipiodol has been studied using X-ray computed tomography (CT).

View Article and Find Full Text PDF

Pathogenic bacteria which enter a viable but non-culturable (VBNC) state impede efforts to reach detectable concentrations required for PCR methods. This motivated a strategy for tangential flow filtration to concentrate bacteria in aqueous samples while maintaining the bacteria in a viable state, maximizing their recovery and achieving high fluxes through a single hollow fiber membrane. Filtrations were carried out for green fluorescent protein (GFP) E.

View Article and Find Full Text PDF

Tangential flow filtration (TFF) through a 30 kDa nominal molecular weight cut-off (MWCO) ultrafiltration membrane is widely employed to concentrate purified monoclonal antibodies (mAbs) to levels required for their formulation into injectable biologics. While TFF has been used to remove casein from milk for cheese production for over 35 years, and in pharmaceutical manufacture of biotherapeutic proteins for 20 years, the rapid decline in filtration rate (i.e.

View Article and Find Full Text PDF

Diffusion and movement of subcutaneously injected biologics and high-concentration immunoglobulin G (IgG) therapeutics away from the injection site and through the subcutaneous (SC) tissue may be concentration dependent. This possibility was confirmed by in situ measurement of diffusion coefficients of unlabeled bovine IgG in phosphate-buffered saline within an in vitro hyaluronic acid matrix that represents the SC electrostatic environment. Diffusion decreased from 2.

View Article and Find Full Text PDF

Pelleting of lignocellulosic biomass to improve its transportation, storage and handling impacts subsequent processing and conversion. This work reports the role of high moisture pelleting in the enzymatic digestibility of corn stover prior to pretreatment, together with associated substrate characteristics. Pelleting increases the digestibility of unpretreated corn stover, from 8.

View Article and Find Full Text PDF

Relatively few studies have addressed the characterization of sugarcane straw (SCS) for production of fermentable sugars through enzyme hydrolysis. Straw is a major co-product of the sugarcane harvest in Brazil that has potential to sustainably increase cellulosic feedstocks in Brazil by 50%. Pretreatment of 10% w/v straw with liquid hot water (LHW) at 180 °C for 50 min (severity, S of 4.

View Article and Find Full Text PDF

In pancreatic cancer, excessive hyaluronic acid (HA) in the tumor microenvironment creates a viscous stroma, which reduces systemic drug transport into the tumor and correlates with poor patient prognosis. HA can be degraded through both enzymatic and nonenzymatic methods to improve mass transport properties. Here, we use an in situ forming implant to provide sustained degradation of HA directly at a local, targeted site.

View Article and Find Full Text PDF

Liquefaction of high solid loadings of unpretreated corn stover pellets has been demonstrated with rheology of the resulting slurries enabling mixing and movement within biorefinery bioreactors. However, some forms of pelleted stover do not readily liquefy, so it is important to screen out lots of unsuitable pellets before processing is initiated. This work reports a laboratory assay that rapidly assesses whether pellets have the potential for enzyme-based liquefaction at high solids loadings.

View Article and Find Full Text PDF

There are currently more than 560 therapeutic monoclonal antibodies (mAbs) at various stages of research and clinical testing, including candidates for administration by subcutaneous (SC) injection. Preclinical studies based on in vitro measurements of high molecular weight proteins within simulated SC matrices are assisting laboratory studies of interactions of injectable biotherapeutic proteins within the SC environment in relation to bioavailability. We report a new method for directly measuring diffusion of unlabeled, high molecular weight proteins injected into an in vitro matrix that simulates the negatively charged environment of the SC.

View Article and Find Full Text PDF

Hydrothermal processes are an attractive clean technology and cost-effective engineering platform for biorefineries based in the conversion of biomass to biofuels and high-value bioproducts under the basis of sustainability and circular bioeconomy. The deep and detailed knowledge of the structural changes by the severity of biomasses hydrothermal fractionation is scientifically and technological needed in order to improve processes effectiveness, reactors designs, and industrial application of the multi-scale target compounds obtained by steam explosion and liquid hot water systems. The concept of the severity factor [log (R)] established>30 years ago, continues to be a useful index that can provide a simple descriptor of the relationship between the operational conditions for biomass fractionation in second generation of biorefineries.

View Article and Find Full Text PDF

The measurement of yield stress and shear thinning flow behavior of slurries formed from unpretreated corn stover at solids loadings of 100-300 g/L provides a key metric for the ability to move, pump, and mix this lignocellulosic slurry, particularly since corn stover slurries represent a major potential feedstock for biorefineries. This study compared static yield stress values and flow hysteresis of corn stover slurries of 100, 150, 200, 250, and 300 g/L, after these slurries were formed by adding pellets to a cellulase enzyme solution (Celluclast 1.5 L) in a fed-batch manner.

View Article and Find Full Text PDF

The movement of solid material into and between unit operations within a biorefinery is a bottleneck in reaching design capacity, with formation of biomass slurries needed to introduce feedstock. Corn stover slurries have been achieved from dilute acid, pretreated materials resulting in slurry concentrations of up to about 150 g/L, above which flowability is compromised. We report a new strategy to liquefy corn stover at higher solids concentration (300 g/L) by initially cooking it with the enzyme mimetic maleic acid at 40 mM and 150 °C.

View Article and Find Full Text PDF

Endoglucanase and xylanase are critical enzymes for liquefaction and enzyme hydrolysis of high solids lignocellulosic biomass to facilitate its transport and production of desired derived products. Here is reported how combinations of different spore concentrations and pH influence microbial morphology, and how this may be used to direct expression and secretion of enzymes by Aspergillus niger. While xylanase production is not affected by A.

View Article and Find Full Text PDF

Purpose: Pharmaceutical buffer systems, especially for injectable biologics such as monoclonal antibodies, are an important component of successful FDA-approved medications. Clinical studies indicate that buffer components may be contributing factors for increased injection site pain.

Methods: To determine the potential nociceptive effects of clinically relevant buffer systems, we developed an in vitro multi-electrode array (MEA) based recording system of rodent dorsal root ganglia (DRG) sensory neuron cell culture.

View Article and Find Full Text PDF

The manner in which added non-catalytic proteins during enzymatic hydrolysis of lignocellulosic substrates enhances hydrolysis mechanisms is not completely understood. Prior research has indicated that a reduction in the non-specific adsorption of enzymes on lignin, and deactivation of enzymes exposed to air-liquid interface provide rationale. This work investigated root causes including effects of the air-liquid interface on non-catalytic proteins, and effects of lignin on endoglucanase.

View Article and Find Full Text PDF

Living 3D in vitro tissue cultures, grown from immortalized cell lines, act as living sentinels as pathogenic bacteria invade the tissue. The infection is reported through changes in the intracellular dynamics of the sentinel cells caused by the disruption of normal cellular function by the infecting bacteria. Here, the Doppler imaging of infected sentinels shows the dynamic characteristics of infections.

View Article and Find Full Text PDF
Article Synopsis
  • Process Analytical Technology (PAT) for monoclonal antibody production involves advanced methods to analyze cell culture fluids and biotherapeutic molecules.
  • Despite well-developed in-line and near-line systems, challenges remain in detecting viruses, microbial contamination, and integrating deep learning for process monitoring.
  • The review focuses on the current state of PAT in both batch and continuous production, highlighting its potential to enhance the manufacturing of biotherapeutics.
View Article and Find Full Text PDF

A comprehensive review of the literature shows that enzyme hydrolysis efficiency decreases with increased solids loadings at constant enzyme:cellulose ratios for pretreated lignocellulosic substrates. In seeking a mechanistic explanation for this phenomenon, we found that a nitrogen atmosphere enhances enzyme hydrolysis and minimizes the decrease in glucose yields as solids loadings are increased in an agitated bioreactor. For liquid hot water pretreated corn stover, at solids loadings of both 100 and 200 g/L and hydrolyzed for 72 hr in a 1 L bioreactor at pH 5.

View Article and Find Full Text PDF

The use of recombinant DNA methods to produce large quantities of protein for therapeutic uses has revolutionized medicine. Industrial challenges for manufacture of biotherapeutic proteins are related to the characteristics of these proteins and the increasing quantities required to address needs of patients, worldwide. A brief overview of therapies in which proteins are employed helps to frame some of the challenges facing their industrial production.

View Article and Find Full Text PDF

Millions of Americans contract food poisoning or are affected by microbial pathogens each year. Rapid, sensitive detection of dilute levels of pathogens in foods, produce, water, and biomanufacturing process samples is key to consumer protection; however, current enrichment methods require as much as a full day to enrich viable bacterial pathogens to detectable levels. Our lab previously demonstrated the ability to concentrate and detect dilute levels of pathogens, within 8 hr, from various food matrices using microfiltration in our continuous cell concentration device (i.

View Article and Find Full Text PDF

To attain Salmonella detection thresholds in spinach suspensions using enrichment media requires at least 24 hr. Separation and concentration of selected microorganisms via microfiltration and microfugation reduce time for sample preparation, especially when working with large volumes of vegetable suspensions. This facilitates accelerated detection of Salmonella in spinach suspensions, and may contribute to effectively monitoring this pathogen before it reaches the consumer.

View Article and Find Full Text PDF

Adaptive laboratory evolution through 12 rounds of culturing experiments of the nanocellulose-producing bacterium Komagataeibacter hansenii ATCC 23769 in a liquid fraction from hydrothermal pretreatment of corn stover resulted in a strain that resists inhibition by phenolics. The original strain generated nanocellulose from glucose in standard Hestrin and Schramm (HS) medium, but not from the glucose in pretreatment liquid. K.

View Article and Find Full Text PDF

Lignin plays an important functional and structural role in plants, but also contributes to the recalcitrance of lignocellulosic biomass to hydrolysis. This study addresses the influence of lignin in hydrolysis of sugarcane bagasse from conventional bred lines (UFV260 and UFV204) that were selected from 432 field-grown clones. In addition to higher sugar production, bagasse clone UFV204 had a small, but statistically significant, lower insoluble lignin content compared with clone UFV260 (15.

View Article and Find Full Text PDF

Salmonella is the most burdensome foodborne pathogen in the USA and a major causal agent of foodborne outbreaks. Detection of a pathogen such as Salmonella can be achieved within a few hours using commercially available rapid methods, but the sample preparation is time consuming and may require multiple days. We have developed and successfully tested an accelerated sample preparation method based on microfiltration, in some cases preceded by a short enrichment step, for the rapid detection of selected pathogens.

View Article and Find Full Text PDF