Using herpes simplex virus type 1 (HSV-1) as a therapeutic tool has recently emerged as a promising strategy for enhancing the treatment of various cancers, particularly those associated with the nervous system, which is the virus's natural site of infection. These viruses are specifically engineered to infect and eradicate tumor cells while leaving healthy cells unharmed. To introduce targeted mutations in specific viral genes, gene-modification techniques such as shuttle vector homologous recombination are commonly employed.
View Article and Find Full Text PDFBackground: Colorectal cancer, is one of most prevalent the cancer in the world. 5-Fluorouracil is a standard chemotherapeutic drug while the acquisition of resistance to 5-Fluorouracil is one of the problems during treatment. In this study, we aimed to find the miRNAs that modulate the expression of and as resistance-inducing genes in the resistant cell lines to 5-Fluorouracil.
View Article and Find Full Text PDFOncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively target and kill cancer cells while sparing normal ones. Among them, engineered Herpes simplex virus type 1 (HSV-1) has been proposed as a potential treatment for cancer and was moved to phase III clinical trials. Previous studies showed that design of OV therapy combined with p53 gene therapy increases the anti-cancer activities of OVs.
View Article and Find Full Text PDFBreast cancer is the most common malignancy in women worldwide. Administration of oncolytic viruses is one of the novel promising cancer therapy approaches. Replication of these viruses is usually limited to cancer cells that have interferon (IFN) signaling defects.
View Article and Find Full Text PDFSome gene expression regulation in cancers can be controlled by epigenetic change like methylation. promoter methylation and expression were evaluated in endometrial cancer. The study was run on 39 tumor tissues of endometrial cancer patients and 41 normal endometrial tissues.
View Article and Find Full Text PDFKallistatin (KL) is a member of the serine proteinase inhibitor (serpin) family regulating oxidative stress, vascular relaxation, inflammation, angiogenesis, cell proliferation, and invasion. The heparin-binding site of Kallistatin has an important role in the interaction with LRP6 leading to the blockade of the Wnt signaling pathway. In this study, we aimed to explore the structural basis of the Kallistatin-LRP6E1E4 complex using in silico approaches and evaluating the anti-proliferative, apoptotic, and cell cycle arrest activities of Kallistatin in colon cancer lines.
View Article and Find Full Text PDFBackground: The tumor suppressor genes play a critical role in cellular and molecular mechanisms such as cell cycle processes, cell differentiation and apoptosis. Aberrant DNA methylation of tumor suppressor genes and subsequent gene expression changes have shown to be involved in the initiation and progression of various malignancies including thyroid malignancies. In this review, we investigated what is known about the impact of promoter hypermethylation on the key tumor suppressor genes known to be involved in cell growth and/or apoptosis of thyroid cancer.
View Article and Find Full Text PDFMol Biol Rep
December 2022
Background: Glioblastoma multiforme (GBM) is an aggressive and lethal brain cancer, which is incurable with standard cancer treatments. miRNAs have great potential to be used for gene therapy due to their ability to modulate several target genes simultaneously. We found miR-429 is downregulated in GBM and has several predicted target genes from the ERBB signaling pathway using bioinformatics tools.
View Article and Find Full Text PDFBackground: Epigenetic alterations such as DNA methylation are known as the main cause of different types of cancers through inactivation of tumor suppressor genes, especially thyroid cancer. Identification of novel and effective markers are important in diagnosis and prevention of thyroid cancer. In the present study, the expression and methylation of Solute carrier family 5 member 8 () in Papillary Thyroid Carcinoma (PTC) in comparison to multinodular goiter (MNG) have been studied.
View Article and Find Full Text PDFHereby, we aimed to investigate the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and Vascular Endothelial Factor-C (VEGF-C) besides the methylation of PTGS2 in AML patients. VEGF-C and PTGS2 expression analysis were evaluated in newly diagnosed AML patients and healthy controls by quantitative Reverse Transcriptase PCR method. Also, PTGS2 methylation status was evaluated by Methylation-Sensitive High-Resolution Melting Curve Analysis (MS-HRM).
View Article and Find Full Text PDFPigment epithelium-derived factor (PEDF) is a member of the serine proteinase inhibitor (serpin) with antiangiogenic, anti-tumorigenic, antioxidant, anti-atherosclerosis, antithrombotic, anti-inflammatory, and neuroprotective properties. The PEDF can bind to low-density lipoprotein receptor-related protein 6 (LRP6), laminin (LR), vascular endothelial growth factor receptor 1 (VEGFR1), vascular endothelial growth factor receptor 2 (VEGFR2), and ATP synthase β-subunit receptors. In this study, we aimed to investigate the structural basis of the interaction between PEDF and its receptors using bioinformatics approaches to identify the critical amino acids for designing anticancer peptides.
View Article and Find Full Text PDFK-Ras activating mutations are significantly associated with tumor progression and aggressive metastatic behavior in various human cancers including pancreatic cancer. So far, despite a large number of concerted efforts, targeting of mutant-type K-Ras has not been successful. In this regard, we aimed to target this oncogene by a combinational approach consisting of small peptide and small molecule inhibitors.
View Article and Find Full Text PDFOne-third of the world's population is at risk of Dengue infection. Envelope domain 3 (EDIII) and nonstructural protein1 (NS1) proteins as the potent antigenicity regions for humoral immunity in addition to the bc loop region as a completely conserved region have been used for designing protective vaccines. We aimed to design vaccine candidates according to the bc loop, EDIII, and NS1 regions of Dengue serotype2 to be used as vaccine candidates for all serotypes of Dengue virus especially serotype 2.
View Article and Find Full Text PDFBackground: Early diagnosis of colorectal cancer (CRC) can lead to prompt treatment modalities. Circulating cell-free DNA (cfDNA) analysis provides an alternative non-invasive procedure for the study of the molecular profiles of the corresponding tumor tissue. In this study, we aimed to investigate PIK3CA, KRAS, BRAF, and APC hotspot mutations in CRC tumor tissue, besides evaluating the diagnostic performance of KRAS, BRAF, and PIK3CA mutations in the plasma cfDNA.
View Article and Find Full Text PDFNovel SARS coronavirus or SARS-CoV-2 is a novel coronavirus that was identified and spread from Wuhan in 2019. On January 30th, the World Health Organization declared the coronavirus outbreak as a Global Public Health Emergency. Although Remdesivir and Molnupiravir are FDA-approved drugs for COVID-19, finding new efficient and low-cost antiviral drugs against COVID-19 for applying in more countries can still be helpful.
View Article and Find Full Text PDFBackground: Investigating aberrant tumor-specific methylation in plasma cell-free DNA provides a promising and noninvasive biomarker for cancer detection.
Objective: We aimed to investigate methylation status of some promoter regions in the plasma and tumor tissues to find biomarkers for early detection of colorectal cancer.
Methods: This case-control study on seventy colorectal cancer patients and fifty matched healthy controls used Methylation-Specific High-Resolution Melting Curve analysis to evaluate the methylation of the selected promoter regions in converted genomic tissue DNA and plasma cfDNA.
Excessive inflammatory responses in wounds are characterized by the presence of high levels of pro-inflammatory M1 macrophages rather than pro-healing M2 macrophages, which leads to delayed wound healing. Macrophage reprogramming from the M1 to M2 phenotype through knockdown of interferon regulatory factor 5 (irf5) has emerged as a possible therapeutic strategy. While downregulation of irf5 could be achieved by siRNA, it very much depends on successful intracellular delivery by suitable siRNA carriers.
View Article and Find Full Text PDFAn increasing attitude towards oncolytic viruses (OVs) is witnessed following T-VEC's approval. In this study, we aimed to delete ICP47 and insert IL-12 in the ICP34.5 deleted HSV-1 backbone to improve the oncolytic properties and provide an immune-stimulatory effect respectively.
View Article and Find Full Text PDFColorectal cancer (CRC) is the third most prevalent cancer all around the world. Chemotherapy plays an essential role in the treatment of CRC while Oxaliplatin, Irinotecan, and 5 - fluorouracil (5-FU) are the most commonly used chemotherapeutic drugs. However, chemo-resistance is a major obstacle to successful therapy.
View Article and Find Full Text PDFGlioblastoma is a lethal and incurable cancer. Tumor suppressor miRNAs are promising gene therapy tools for cancer treatment. In silico, we predicted miR-424 as a tumor suppressor.
View Article and Find Full Text PDFBackground: Microsatellite instability (MSI) results from genetic and epigenetic changes. Studying Microsatellite instability can help in treatment and categorization of colorectal cancer (CRC) patients.
Objectives: We aimed to investigate whether 14 genomic markers consisting of BAT-62, BAT-60, BAT-59a, BAT-56a, BAT-56b, DCD, RIOX, RNF, FOXP, ACVR, CASP2, HSP110, MT1X, and DNMT3a can increase the detection rate of MSI in CRC.
Background: Thyroid cancer is the fourth most common cancer in the world. Papillary thyroid carcinoma (PTC) accounts for 80% of all types of thyroid neoplasm. Epigenetic alterations such as DNA methylation are known as the main cause of different types of cancers through inactivation of tumor suppressor genes.
View Article and Find Full Text PDFIntroduction: Disease recurrence is an important obstacle in estrogen receptor positive (ER) tamoxifen treated breast carcinoma patients. Tamoxifen resistance-related molecular mechanisms are not fully understood. Alteration in DNA methylation which contributes to transcriptional regulation of cancer-related genes plays a crucial role in tamoxifen response.
View Article and Find Full Text PDFLow-density lipoprotein receptor-related protein 6 (LRP6) is an important therapeutic target for diseases such as osteoporosis, Alzheimer, cancer, and neurodegenerative disease. Computational methods such as ligand-based and structure-based virtual screening have been introduced as an extremely efficient and accurate tool for finding new drug targets and candidates. In this study, we aimed to screen the National Cancer Institute (NCI) Diversity Set II and parts of the ZINC database by virtual screening to identify potential and safe compounds that can inhibit the LRP6 protein.
View Article and Find Full Text PDFWnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (). Therefore, it can be considered as a potential drug target.
View Article and Find Full Text PDF