Publications by authors named "Lada Purvinsh"

This paper considers the evaluation of uncertainty of quantitative gel electrophoresis. To date, such uncertainty estimation presented in the literature are based on the multiple measurements performed for assessing the intra- and interlaboratory reproducibility using standard samples. This paper shows how to estimate the uncertainty in cases where we cannot study scattering components of the results.

View Article and Find Full Text PDF

Exosomes are involved in intercellular communication and can transfer regulatory molecules between cells. Consequently, they can participate in host immune response regulation. For the influenza A virus (IAV), there is very limited information on changes in exosome composition during cell infection shedding light on the potential role of these extracellular membrane vesicles.

View Article and Find Full Text PDF

Exosomes are nanovesicles with a 40-150 nm diameter and are essential for communication between cells. Literature data suggest that exosomes obtained from different sources (cell cultures, blood plasma, urea, saliva, tears, spinal fluid, milk) using a series of centrifugations and ultracentrifugations contain hundreds and thousands of different protein and nucleic acid molecules. However, most of these proteins are not an intrinsic part of exosomes; instead, they co-isolate with exosomes.

View Article and Find Full Text PDF

Exosomes are natural nanocontainers actively secreted by the body's cells and transmitting molecular signals of various types to recipient cells. Cellular mechanisms of exosomes' biogenesis involve specific sorting of RNA for incorporation into them. As a result, the molecular composition of exosomes is closely related to the donor cell's functional state, and this makes exosomes an important diagnostic and prognostic marker in a number of diseases (primarily oncological).

View Article and Find Full Text PDF

Secretion of extracellular vesicles (EVs) is a fundamental property of living cells. EVs are known to transfer biological signals between cells and thus regulate the functional state of recipient cells. Such vesicles mediate the intercellular transport of many biologically active molecules (proteins, nucleic acids, specific lipids) and participate in regulation of key physiological processes.

View Article and Find Full Text PDF