Local skin heating is used to assess microvascular function in clinical populations because NO is required for full expression of the response; however, controversy exists as to the precise NO synthase (NOS) isoform producing NO. Human aging is associated with attenuated cutaneous vasodilation but little is known about the middle aged, an age cohort used for comparison with clinical populations. We hypothesized that endothelial NOS (eNOS) is the primary isoform mediating NO production during local heating, and eNOS-dependent vasodilation would be reduced in middle-aged skin.
View Article and Find Full Text PDFFunctional constitutive nitric oxide synthase (NOS) is required for full expression of reflex cutaneous vasodilation that is attenuated in aged skin. Both the essential cofactor tetrahydrobiopterin (BH(4)) and adequate substrate concentrations are necessary for the functional synthesis of nitric oxide (NO) through NOS, both of which are reduced in aged vasculature through increased oxidant stress and upregulated arginase, respectively. We hypothesized that acute local BH(4) administration or arginase inhibition would similarly augment reflex vasodilation in aged skin during passive whole body heat stress.
View Article and Find Full Text PDFEssential hypertension is a proinflammatory, proconstrictor disease coinciding with endothelial dysfunction and inward vessel remodeling. Using the skin circulation, our aim was to determine whether inducible NO synthase (iNOS) upregulation attenuates NO-dependent cutaneous vasodilation in hypertensive humans. We hypothesized that, with hypertension, localized iNOS inhibition would restore vasodilation in response to NO-dependent stimuli, and iNOS expression would be increased and phosphorylated vasodilator-stimulated phosphoprotein would be decreased.
View Article and Find Full Text PDFElevated oxidized low-density lipoproteins (LDL) are associated with vascular dysfunction in the cutaneous microvasculature, induced in part by upregulated arginase activity and increased globalized oxidant stress. Since tetrahydrobiopterin (BH(4)) is an essential cofactor for endothelial nitric oxide synthase (NOS3), decreased bioavailability of the substrate l-arginine and/or BH(4) may contribute to decreased NO production with hypercholesterolaemia. We hypothesized that (1) localized administration of BH(4) would augment NO-dependent vasodilatation in hypercholesterolaemic human skin, which would be further increased when combined with arginase inhibition and (2) the improvement induced by localized BH(4) would be attenuated after a 3 month oral atorvastatin intervention (10 mg).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2011
Elevated low-density lipoproteins (LDL) are associated with cutaneous microvascular dysfunction partially mediated by increased arginase activity, which is decreased following a systemic atorvastatin therapy. We hypothesized that increased ascorbate-sensitive oxidant stress, partially mediated through uncoupled nitric oxide synthase (NOS) induced by upregulated arginase, contributes to cutaneous microvascular dysfunction in hypercholesterolemic (HC) humans. Four microdialysis fibers were placed in the skin of nine HC (LDL = 177 ± 6 mg/dl) men and women before and after 3 mo of a systemic atorvastatin intervention and at baseline in nine normocholesterolemic (NC) (LDL = 95 ± 4 mg/dl) subjects.
View Article and Find Full Text PDFHeat is the most abundant byproduct of cellular metabolism. As such, dynamic exercise in which a significant percentage of muscle mass is engaged generates thermoregulatory demands that are met in part by increases in skin blood flow. Increased skin blood flow during exercise adds to the demands on cardiac output and confers additional circulatory strain beyond that associated with perfusion of active muscle alone.
View Article and Find Full Text PDFElevated low-density lipoproteins (LDLs) are associated with vascular dysfunction evident in the cutaneous microvasculature. We hypothesized that uncoupled endothelial nitric oxide synthase (NOS3) through upregulated arginase contributes to cutaneous microvascular dysfunction in hyperocholesterolaemic (HC) humans and that a statin intervention would decrease arginase activity. Five microdialysis fibres were placed in the skin of nine normocholesterolaemic (NC: LDL level 95±4 mg dl⁻¹) and nine hypercholesterolaemic (HC: LDL: 177±6 mg dl⁻¹) men and women before and after 3 months of systemic atrovastatin.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2010
We have recently demonstrated that tetrahydrobiopterin (BH(4)) augments reflex vasoconstriction (VC) in aged skin. Although this appears to occur through its role in norepinephrine (NE) biosynthesis, the extent with which vascular mechanisms are affected are unknown. We hypothesized that localized BH(4) supplementation would not affect the VC response to exogenous NE when sympathetic nerves were blocked.
View Article and Find Full Text PDFJ Appl Physiol (1985)
November 2010
Human skin blood flow is controlled via dual innervation from the sympathetic nervous system. Reflex cutaneous vasoconstriction and vasodilation are both impaired with primary aging, rendering the aged more vulnerable to hypothermia and cardiovascular complications from heat-related illness. Age-related alterations in the thermoregulatory control of skin blood flow occur at multiple points along the efferent arm of the reflex, including 1) diminished sympathetic outflow, 2) altered presynaptic neurotransmitter synthesis, 3) reduced vascular responsiveness, and 4) impairments in downstream (endothelial and vascular smooth muscle) second-messenger signaling.
View Article and Find Full Text PDFChronic systemic platelet cyclooxygenase (COX) inhibition with low-dose aspirin [acetylsalicylic acid (ASA)] significantly attenuates reflex cutaneous vasodilation in middle-aged humans, whereas acute, localized, nonisoform-specific inhibition of vascular COX with intradermal administration of ketorolac does not alter skin blood flow during hyperthermia. Taken together, these data suggest that platelets may be involved in reflex cutaneous vasodilation, and this response is inhibited with systemic pharmacological platelet inhibition. We hypothesized that, similar to ASA, specific platelet ADP receptor inhibition with clopidogrel would attenuate reflex vasodilation in middle-aged skin.
View Article and Find Full Text PDFThe attenuated reflex vasoconstriction in aged skin may be partly mediated by oxidant-induced reduction in functional substrate and cofactor availability for noradrenaline biosynthesis. We hypothesized that localized supplementation of tyrosine and tetrahydrobiopterin (BH(4)) in aged human skin could augment reflex- (whole-body cooling) and pharmacologically (tyramine, which displaces noradrenaline from axon terminals) induced vasoconstriction. Four microdialysis fibres were placed in the forearm skin of 10 young and 10 older subjects for infusion of (1) Ringer solution (control), (2) 0.
View Article and Find Full Text PDFHuman exposure to cold and heat stimulates cutaneous vasoconstriction and vasodilation via distinct sympathetic reflex and locally mediated pathways. The mechanisms mediating cutaneous vasoconstriction and vasodilation are impaired with primary aging, rendering the aged more vulnerable to hypothermia and cardiovascular complications from heat-related illness, respectively. This paper highlights recent findings discussing how age-related decrements in sympathetic neurotransmission contribute directly to thermoregulatory impairments, whereas changes in local intracellular signaling suggest a more generalized age-associated vascular dysfunction.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2009
Primary human aging may be associated with augmented Rho kinase (ROCK)-mediated contraction of vascular smooth muscle and ROCK-mediated inhibition of nitric oxide synthase (NOS). We hypothesized that the contribution of ROCK to reflex vasoconstriction (VC) is greater in aged skin. Cutaneous VC was elicited by 1) whole body cooling [mean skin temperature (T(sk)) = 30.
View Article and Find Full Text PDFIn young healthy humans full expression of reflex cutaneous vasodilation is dependent on cyclooxygenase (COX)- and nitric oxide synthase (NOS)-dependent mechanisms. Chronic low-dose aspirin therapy attenuates reflex cutaneous vasodilation potentially through both platelet and vascular COX-dependent mechanisms. We hypothesized the contribution of COX-dependent vasodilators to reflex cutaneous vasodilation during localized acute COX inhibition would be attenuated in healthy middle-aged humans due to a shift toward COX-dependent vasoconstrictors.
View Article and Find Full Text PDFReflex vasoconstriction (VC) is attenuated in aged skin resulting in greater skin blood flow and heat loss during cold exposure. We hypothesized that adrenergic function is compromised due to depletion of tetrahydrobiopterin (BH(4)), an essential cofactor required for catecholamine synthesis, and therefore local BH(4) supplementation would functionally augment reflex and pharmacologically induced VC elicited by gradual whole-body cooling (skin temperature (T(sk)) = 30.5 degrees C) and tyramine infusion, respectively.
View Article and Find Full Text PDFJ Appl Physiol (1985)
February 2009
Full expression of reflex cutaneous vasodilation is dependent on cyclooxygenase- (COX) and nitric oxide synthase- (NOS) dependent mechanisms. Low-dose aspirin therapy is widely prescribed to inhibit COX-1 in platelets for atherothrombotic prevention. We hypothesized that chronic COX inhibition with daily low-dose aspirin therapy (81 mg) would attenuate reflex vasodilation in healthy human skin.
View Article and Find Full Text PDFHuman exposure to cold stimulates cutaneous vasoconstriction by activating both sympathetic reflex and locally mediated pathways. Older humans are vulnerable to hypothermia because primary aging impairs thermoregulatory cutaneous vasoconstriction. This article highlights recent findings discussing how age-related decrements in sympathetic neurotransmission contribute directly to thermoregulatory impairment, whereas changes in local cold-induced intracellular signaling suggest a more generalized age-associated vascular dysfunction.
View Article and Find Full Text PDFHuman skin blood flow increases in response to increased body core and local skin temperature via distinct reflex and local mechanisms requiring functional nitric oxide (NO) for full expression. The mechanisms mediating cutaneous vasodilation are impaired with primary aging, resulting in attenuated vasodilation. This article highlights recent findings of how age-related vascular impairments in NO signaling contribute to attenuated cutaneous vasodilation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2007
Full expression of reflex cutaneous vasodilation (VD) is dependent on nitric oxide (NO) and is attenuated with essential hypertension. Decreased NO-dependent VD may be due to 1) increased oxidant stress and/or 2) decreased L-arginine availability through upregulated arginase activity, potentially leading to increased superoxide production through uncoupled NO synthase (NOS). The purpose of this study was to determine the effect of antioxidant supplementation (alone and combined with arginase inhibition) on attenuated NO-dependent reflex cutaneous VD in hypertensive subjects.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2007
Cutaneous vasoconstriction (VC), a critical thermoregulatory response to cold, is generally impaired with aging. However, the effects of aging on local cooling-induced VC and its underlying mechanisms are poorly understood. We tested whether aged skin exhibits attenuated localized cold-induced VC and whether Rho kinase-mediated cold-induced VC is augmented with age.
View Article and Find Full Text PDF