Publications by authors named "Lacroix-Lamande S"

Background: Human cryptosporidiosis is distributed worldwide, and it is recognised as a leading cause of acute diarrhoea and death in infants in low- and middle-income countries. Besides immune status, the higher incidence and severity of this gastrointestinal disease in young children could also be attributed to the digestive environment. For instance, human gastrointestinal physiology undergoes significant changes with age, however the role this variability plays in Cryptosporidium parvum pathogenesis is not known.

View Article and Find Full Text PDF

In order to survive and replicate, Salmonella has evolved mechanisms to gain access to intestinal epithelial cells of the crypt. However, the impact of Salmonella Typhimurium on stem cells and progenitors, which are responsible for the ability of the intestinal epithelium to renew and protect itself, remains unclear. Given that intestinal organoids growth is sustained by stem cells and progenitors activity, we have used this model to document the effects of Salmonella Typhimurium infection on epithelial proliferation and differentiation, and compared it to an in vivo model of Salmonella infection in mice.

View Article and Find Full Text PDF

The escalation of antibiotic resistance, pandemics, and nosocomial infections underscores the importance of research in both animal and human infectious diseases. Recent advancements in three-dimensional tissue cultures, or "organoids", have revolutionized the development of in vitro models for infectious diseases. Our study conducts a bibliometric analysis on the use of organoids in modeling infectious diseases, offering an in-depth overview of this field's current landscape.

View Article and Find Full Text PDF

By providing innate immune modulatory stimuli, the early-life immune system can be enhanced to increase resistance to infections. Activation of innate cell surface receptors called pattern recognition receptors by Toll-like receptor (TLR) ligands is one promising approach that can help to control infections as described for listeriosis and cryptosporidiosis. In this study, the effect of TLR2/TLR1 and TLR2/TLR6 agonists was compared when injected into neonatal mice.

View Article and Find Full Text PDF

Introduction: Cryptosporidiosis is a poorly controlled zoonosis caused by an intestinal parasite, , with a high prevalence in livestock (cattle, sheep, and goats). Young animals are particularly susceptible to this infection due to the immaturity of their intestinal immune system. In a neonatal mouse model, we previously demonstrated the importance of the innate immunity and particularly of type 1 conventional dendritic cells (cDC1) among mononuclear phagocytes (MPs) in controlling the acute phase of infection.

View Article and Find Full Text PDF

Background: Eimeria genus belongs to the apicomplexan parasite phylum and is responsible for coccidiosis, an intestinal disease with a major economic impact on poultry production. Eimeria tenella is one of the most virulent species in chickens. In a previous study, we showed a negative impact of caecal microbiota on the physiopathology of this infection.

View Article and Find Full Text PDF

Introduction: Coccidiosis, a disease caused by intestinal apicomplexan parasites , is a threat to poultry production. is one of the most pathogenic species, frequently causing a high prevalence of opportunistic infections.

Objective: The objective of this study is to investigate the role of the microbiota in the pathogenesis of severe infection.

View Article and Find Full Text PDF

Chicken infection with Salmonella Typhimurium is an important source of foodborne human diseases. Salmonella colonizes the avian intestinal tract and more particularly the caecum, without causing symptoms. This thus poses a challenge for the prevention of foodborne transmission.

View Article and Find Full Text PDF

Eimeria tenella is an obligate intracellular parasite responsible for avian coccidiosis. Like other apicomplexan parasites, such as Toxoplasma gondii, cell invasion and intracellular development rely on apical organelle content discharge, named micronemes and rhoptries. Some rhoptry (ROP) kinases (ROPK) are key virulence factors in T.

View Article and Find Full Text PDF

serovars are invasive gram-negative bacteria, causing a wide range of diseases from gastroenteritis to typhoid fever, representing a public health threat around the world. gains access to the intestinal lumen after oral ingestion of contaminated food or water. The crucial initial step to establish infection is the interaction with the intestinal epithelium.

View Article and Find Full Text PDF

Enteric infectious diseases are not all well controlled, which leads to animal suffering and sometimes death in the most severe cases, in addition to economic losses for farmers. Typical symptoms of enteric infections include watery diarrhea, stomach cramps or pain, dehydration, nausea, vomiting, fever and weight loss. Evaluation of new control methods against enteric infections requires the use of many animals.

View Article and Find Full Text PDF

Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). is a gene family that is known to play important roles in host-pathogen interaction in but is still poorly described in , the parasite responsible for avian coccidiosis worldwide. In the genome, 28 genes are predicted and could be classified as active ( = 7), inactive (incomplete catalytic triad, = 12), and non-canonical kinases (active kinase with a modified catalytic triad, = 9).

View Article and Find Full Text PDF

In livestock species, the monolayer of epithelial cells covering the digestive mucosa plays an essential role for nutrition and gut barrier function. However, research on farm animal intestinal epithelium has been hampered by the lack of appropriate in vitro models. Over the past decade, methods to culture livestock intestinal organoids have been developed in pig, bovine, rabbit, horse, sheep and chicken.

View Article and Find Full Text PDF

Coccidiosis is a widespread intestinal disease of poultry caused by a parasite of the genus is one of the most virulent species that specifically colonizes the caeca, an organ which harbors a rich and complex microbiota. Our objective was to study the impact of the intestinal microbiota on parasite infection and development using an original model of germ-free broilers. We observed that germ-free chickens presented significantly much lower load of oocysts in caecal contents than conventional chickens.

View Article and Find Full Text PDF

causes diarrhea in infants under 5 years, in immunosuppressed individuals or in young ruminants. This parasite infects the apical side of ileal epithelial cells where it develops itself and induces inflammation. Antimicrobial peptides (AMPs) are part of the innate immune response, playing a major role in the control of the acute phase of infection in neonates.

View Article and Find Full Text PDF

Studies of the gut microbiota contribution to the host physiology and immunocompetence are facilitated by the availability of germ-free animal models, which are considered the gold standard. Nesting birds are ideal models for the production of germ-free animals since there is no need to raise their relatives under sterile conditions. Germ-free chickens are mainly generated from specific-pathogen-free (SPF) experimental lines, which are poorly representative of commercial chicken lines.

View Article and Find Full Text PDF

While cryptosporidiosis is recognized as being among the most common causes of human parasitic diarrhea in the world, there is currently limited knowledge on Cryptosporidium infection mechanisms, incomplete codification of diagnostic methods, and a need for additional therapeutic options. In response, the Seventh International Giardia and Cryptosporidium Conference (IGCC 2019) was hosted from 23 to 26 June 2019, at the Rouen Normandy University, France. This trusted event brought together an international delegation of researchers to synthesize recent advances and identify key research questions and knowledge gaps.

View Article and Find Full Text PDF

Background: Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells).

Results: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs.

View Article and Find Full Text PDF

Coccidia are obligate intracellular protozoan parasites responsible for human and veterinary diseases. Eimeria tenella, the aetiologic agent of caecal coccidiosis, is a major pathogen of chickens. In Toxoplasma gondii, some kinases from the rhoptry compartment (ROP) are key virulence factors.

View Article and Find Full Text PDF

Understanding the protective immune response to Cryptosporidium parvum infection is of critical importance to reduce the widespread impact caused by this disease in young individuals. Here, we analyzed the various subsets of CD103+ and CD103- intestinal dendritic cells (DCs) of wild-type and Batf3-/- neonatal mice at homoeostasis and investigated their role during infection. Neonatal Batf3-/- mice had a low CD103+/CD103- DC ratio, resulting in higher susceptibility to the acute phase of the infection and they could not cure the infection.

View Article and Find Full Text PDF

Neonatal period is characterized by an immature intestinal barrier. Scattered evidence suggests that early life stressful events induce long lasting alterations of intestinal homeostasis mimicking Irritable Bowel Syndrome (IBS). Those observations highlighting defect of intestinal barrier by early life stress questioned its potential role as a risk factor for gastrointestinal disorders such as colitis and infections.

View Article and Find Full Text PDF

Cryptosporidium infection leads to acute diarrhea worldwide. The development of cryptosporidiosis is closely related to the immune status of its host, affecting primarily young ruminants, infants, and immunocompromised individuals. In recent years, several studies have improved our knowledge on the immune mechanisms responsible for the control of the acute phase of the infection and have highlighted the importance of innate immunity.

View Article and Find Full Text PDF

Background & Aims: Separation of newborn rats from their mothers induces visceral hypersensitivity and impaired epithelial secretory cell lineages when they are adults. Little is known about the mechanisms by which maternal separation causes visceral hypersensitivity or its relationship with defects in epithelial secretory cell lineages.

Methods: We performed studies with C3H/HeN mice separated from their mothers as newborns and mice genetically engineered (Sox9-vil-cre on C57BL/6 background) to have deficiencies in Paneth cells.

View Article and Find Full Text PDF

Intestinal epithelial cells form a single layer separating the intestinal lumen containing nutriments and microbiota from the underlying sterile tissue and therefore play a key role in maintaining homeostasis. We investigated the factors contributing to the alteration of the epithelial barrier function during Cryptosporidium parvum infection. Infected polarized epithelial cell monolayers exhibit a drop in transepithelial resistance associated with a delocalization of E-cadherin and β-catenin from their intercellular area of contact, the adherens junction complex.

View Article and Find Full Text PDF

Cryptosporidium parvum, a zoonotic protozoan parasite, causes important losses in neonatal ruminants. Innate immunity plays a key role in controlling the acute phase of this infection. The participation of NCR1+ Natural Killer (NK) cells in the early intestinal innate immune response to the parasite was investigated in neonatal lambs inoculated at birth.

View Article and Find Full Text PDF