Publications by authors named "Lacko L"

Plasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine.

View Article and Find Full Text PDF

3D reconstructive imaging is a powerful strategy to interrogate the global architecture of tissues. We developed Atacama Clear (ATC), a novel method that increases 3D imaging signal-to-noise ratios (SNRs) while simultaneously increasing the capacity of tissue to be cleared. ATC potentiated the clearing capacity of all tested chemical reagents currently used for optical clearing by an average of 68%, and more than doubled SNRs.

View Article and Find Full Text PDF

COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response.

View Article and Find Full Text PDF

Population-based genome-wide association studies (GWAS) normally require a large sample size, which can be labor intensive and costly. Recently, we reported a human induced pluripotent stem cell (hiPSC) array-based GWAS method, identifying NDUFA4 as a host factor for Zika virus (ZIKV) infection. In this study, we extended our analysis to trophectoderm cells, which constitute one of the major routes of mother-to-fetus transmission of ZIKV during pregnancy.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) and three-dimensional organoids have ushered in a new era for disease modeling and drug discovery. Over the past decade, significant progress has been in deriving functional organoids from hPSCs, which have been applied to recapitulate disease phenotypes. In addition, these advancements have extended the application of hPSCs and organoids for drug screening and clinical-trial safety evaluations.

View Article and Find Full Text PDF

Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, is the biggest challenge to the global public health and economy in recent years. Until now, only limited therapeutic regimens have been available for COVID-19 patients, sparking unprecedented efforts to study coronavirus biology. The genome of SARS-CoV-2 encodes 16 non-structural, four structural, and nine accessory proteins, which mediate the viral life cycle, including viral entry, RNA replication and transcription, virion assembly and release.

View Article and Find Full Text PDF

Population-based studies to identify disease-associated risk alleles typically require samples from a large number of individuals. Here, we report a human-induced pluripotent stem cell (hiPSC)-based screening strategy to link human genetics with viral infectivity. A genome-wide association study (GWAS) identified a cluster of single-nucleotide polymorphisms (SNPs) in a cis-regulatory region of the NDUFA4 gene, which was associated with susceptibility to Zika virus (ZIKV) infection.

View Article and Find Full Text PDF

Using an automatic microfluidics droplet platform, Ding et al. successfully replicated the tumor micro-environment by generating micro-organospheres, which were then used to predict the response to anti-tumor drugs. These miniature models could be obtained within an extremely short time frame of 14 days, amplifying their role in facilitating cancer treatment decisions.

View Article and Find Full Text PDF

The effect of SARS-CoV-2 infection on placental function is not well understood. Analysis of placentas from women who tested positive at delivery showed SARS-CoV-2 genomic and subgenomic RNA in 22 out of 52 placentas. Placentas from two mothers with symptomatic COVID-19 whose pregnancies resulted in adverse outcomes for the fetuses contained high levels of viral Alpha variant RNA.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the deadliest pandemics in history. SARS-CoV-2 not only infects the respiratory tract, but also causes damage to many organs. Organoids, which can self-renew and recapitulate the various physiology of different organs, serve as powerful platforms to model COVID-19.

View Article and Find Full Text PDF

Background: Increasing evidence suggests that cardiac arrhythmias are frequent clinical features of coronavirus disease 2019 (COVID-19). Sinus node damage may lead to bradycardia. However, it is challenging to explore human sinoatrial node (SAN) pathophysiology due to difficulty in isolating and culturing human SAN cells.

View Article and Find Full Text PDF

SARS-CoV-2 infection during pregnancy leads to an increased risk of adverse pregnancy outcomes. Although the placenta itself can be a target of virus infection, most neonates are virus free and are born healthy or recover quickly. Here, we investigated the impact of SARS-CoV-2 infection on the placenta from a cohort of women who were infected late during pregnancy and had tested nasal swab positive for SARS-CoV-2 by qRT-PCR at delivery.

View Article and Find Full Text PDF

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines.

View Article and Find Full Text PDF

The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence.

View Article and Find Full Text PDF

COVID-19 patients commonly present with neurological signs of central nervous system (CNS) and/or peripheral nervous system dysfunction. However, which neural cells are permissive to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been controversial. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively permissive to SARS-CoV-2 infection both and upon transplantation , and that SARS-CoV-2 infection triggers a DA neuron inflammatory and cellular senescence response.

View Article and Find Full Text PDF

The high-throughput phenotypic screen (HTPS) has become an emerging technology to discover synthetic small molecules that regulate stem cell fates. Here, we review the application of HTPS to identify small molecules controlling stem cell renewal, reprogramming, differentiation, and lineage conversion. Moreover, we discuss the use of HTPS to discover small molecules/polymers mimicking the stem cell extracellular niche.

View Article and Find Full Text PDF

Conventional cancer cell lines and animal models have been mainstays of cancer research. More recently, human pluripotent stem cells (hPSCs) and hPSC-derived organoid technologies, together with genome engineering approaches, have provided a complementary platform to model cancer progression. Here, we review the application of these technologies in cancer modeling with respect to the cell-of-origin, cancer propagation, and metastasis.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection results in an increased risk of spontaneous abortion and poor intrauterine growth although the underlying mechanisms remain undetermined. Little is known about the impact of ZIKV infection during the earliest stages of pregnancy, at pre- and peri-implantation, because most current ZIKV pregnancy studies have focused on post-implantation stages. Here, we demonstrate that trophectoderm cells of pre-implantation human and mouse embryos can be infected with ZIKV, and propagate virus causing neural progenitor cell death.

View Article and Find Full Text PDF

A functional placenta develops through a delicate interplay of its vascular and trophoblast compartments. We have identified a previously unknown expression domain for the endothelial-specific microRNA miR-126 in trophoblasts of murine and human placentas. Here, we determine the role of miR-126 in placental development using a mouse model with a targeted deletion of miR-126.

View Article and Find Full Text PDF

Proper placental development is crucial to establish a successful pregnancy. Defective placentation is the major cause of several pregnancy complications, including preeclampsia (PE). We have previously demonstrated that the secreted factor Epidermal Growth Factor-like Domain 7 (EGFL7) is expressed in trophoblast cells of the human placenta and that it regulates trophoblast migration and invasion, suggesting a role in placental development.

View Article and Find Full Text PDF

Interest in human brown fat as a novel therapeutic target to tackle the growing obesity and diabetes epidemic has increased dramatically in recent years. While much insight into brown fat biology has been gained from murine cell lines and models, few resources are available to study human brown fat in vitro, which makes the need for new ways to derive and study human brown adipocytes imperative. Human ES cell based reporter systems present an excellent tool to identify, mark, and purify cell populations of choice.

View Article and Find Full Text PDF

EGFL7 is a secreted angiogenic factor produced by embryonic endothelial cells. To understand its role in placental development, we established a novel knockout mouse. The mutant mice have gross defects in chorioallantoic branching morphogenesis and placental vascular patterning.

View Article and Find Full Text PDF

Although endothelial cells have been shown to affect mouse pancreatic development, their precise function in human development remains unclear. Using a coculture system containing human embryonic stem cell (hESC)-derived progenitors and endothelial cells, we found that endothelial cells play a stage-dependent role in pancreatic development, in which they maintain pancreatic progenitor (PP) self-renewal and impair further differentiation into hormone-expressing cells. The mechanistic studies suggest that the endothelial cells act through the secretion of EGFL7.

View Article and Find Full Text PDF

The mammalian placenta is the site of nutrient and gas exchange between the mother and fetus, and is comprised of two principal cell types, trophoblasts and endothelial cells. Proper placental development requires invasion and differentiation of trophoblast cells, together with coordinated fetal vasculogenesis and maternal vascular remodeling. Disruption in these processes can result in placental pathologies such as preeclampsia (PE), a disease characterized by late gestational hypertension and proteinuria.

View Article and Find Full Text PDF