Biguanide-based cationic polyelectrolytes are used as key components of interpolyelectrolyte complexes bolstering alginate hydrogel microcapsules employed in cell therapies. Nevertheless, electrostatic complexation of these unique polycations has not been studied before. In this study, the interaction between biguanide condensates and anionic polyelectrolytes with carboxylate groups was studied on a model system of a metformin condensate (MFC) and an anionic diblock polyelectrolyte poly(methacrylic acid)--poly(ethylene oxide) (PMAA-PEO).
View Article and Find Full Text PDFDMTMM-mediated amidation of sodium alginate is one of the methods used for the chemical modification of alginate with amines. However, there is a limited understanding of how the reaction conditions, particularly the pH value, influence the conjugation efficiency (CE) and the resulting degree of substitution (DS). In this study, we investigated the effect of the pH during the reaction, focusing on both neutral and weakly basic conditions, using water and buffer as solvents.
View Article and Find Full Text PDFPostmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly . Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure.
View Article and Find Full Text PDFThe transplantation of immunoisolated stem cell derived beta cell clusters (SC-β) has the potential to restore physiological glycemic control in patients with type I diabetes. This strategy is attractive as it uses a renewable β-cell source without the need for systemic immune suppression. SC-β cells have been shown to reverse diabetes in immune compromised mice when transplanted as ≈300 µm diameter clusters into sites where they can become revascularized.
View Article and Find Full Text PDFLong-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient.
View Article and Find Full Text PDFIn this study, we developed a high-throughput microchannel emulsification process to encapsulate pancreatic beta cells in monodisperse alginate beads. The process builds on a stirred emulsification and internal gelation method previously adapted to pancreatic cell encapsulation. Alginate bead production was achieved by flowing a 0.
View Article and Find Full Text PDFThe transplantation of pancreatic islet cells could restore glycaemic control in patients with type-I diabetes. Microspheres for islet encapsulation have enabled long-term glycaemic control in diabetic rodent models; yet human patients transplanted with equivalent microsphere formulations have experienced only transient islet-graft function, owing to a vigorous foreign-body reaction (FBR), to pericapsular fibrotic overgrowth (PFO) and, in upright bipedal species, to the sedimentation of the microspheres within the peritoneal cavity. Here, we report the results of the testing, in non-human primate (NHP) models, of seven alginate formulations that were efficacious in rodents, including three that led to transient islet-graft function in clinical trials.
View Article and Find Full Text PDFAmong external stimuli used to trigger release of a drug from a polymeric carrier, ultrasound has gained increasing attention due to its non-invasive nature, safety and low cost. Despite this attention, there is only limited knowledge about how materials available for the preparation of drug carriers respond to ultrasound. This study investigates the effect of ultrasound on the release of a hydrophobic drug, dexamethasone, from poly(2-oxazoline)-based micelles.
View Article and Find Full Text PDFMinimizing the foreign body reaction to polyimide-based implanted devices plays a pivotal role in several biomedical applications. In this work, we propose materials exhibiting nonbiofouling properties and a Young's modulus reflecting that of soft human tissues. We describe the synthesis, characterization, and in vitro validation of poly(carboxybetaine) hydrogel coatings covalently attached to polyimide substrates via a photolabile 4-azidophenyl group, incorporated in poly(carboxybetaine) chains at two concentrations of 1.
View Article and Find Full Text PDFIonically crosslinked chitosan/tripolyphosphate (Chit/TPP) particles have been widely tested in biomedical applications, particularly as potential carriers for controlled drug delivery. Since Chit/TPP particles are typically prepared under acidic conditions, their application in physiological environment and correct evaluation of biological data ultimately require knowledge on their physico-chemical properties and overall behaviour at physiological pH, as they may differ substantially from those exhibited after preparation. In this study, Chit/TPP complexes prepared at pH 4.
View Article and Find Full Text PDFA next-generation cure for type 1 diabetes relies on immunoprotection of insulin-producing cells, which can be achieved by their encapsulation in microspheres made of non-covalently crosslinked hydrogels. Treatment success is directly related to the microsphere structure that is characterized by the localization of the polymers constituting the hydrogel material. However, due to the lack of a suitable analytical method, it is presently unknown how the microsphere structure changes in vivo, which complicates evaluation of different encapsulation approaches.
View Article and Find Full Text PDFUnlabelled: Alginate microspheres are presently under evaluation for future cell-based therapy. Their ability to induce harmful host reactions needs to be identified for developing the most suitable devices and efficient prevention strategies. We used a lepirudin based human whole blood model to investigate the coagulation potentials of alginate-based microspheres: alginate microbeads (Ca/Ba Beads), alginate poly-l-lysine microcapsules (APA and AP microcapsules) and sodium alginate-sodium cellulose sulfate-poly(methylene-co-cyanoguanidine) microcapsules (PMCG microcapsules).
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2017
Simple and robust methods for modifying hydrophobic polymer surfaces with zwitterionic polymers using UV irradiation were developed. Two random zwitterionic copolymers consisting of either carboxybetaine or sulfobetaine methacrylamide monomers and monomers bearing a photolabile azidophenyl group were directly photoimmobilized on polymeric surfaces (polyester, polyethylene and polystyrene) via covalent interactions in a spatially controlled manner. These copolymers were also electrospun to form self-standing mats.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2017
The controlled preparation of chitosan particles is far from being trivial due to a considerable number of experimental parameters. For chitosan-tripolyphosphate (TPP) particles we evaluate the impact of chemical (type of chitosan, concentration, chitosan to TPP ratio, pH, ionic strength) and process factors (dialysis, stirring rate, rate of TPP addition, temperature, needle diameter) on the size and colloidal stability. The particles were prepared at pH=6.
View Article and Find Full Text PDFEncapsulation is a well-established method of biomaterial protection, controlled release, and efficient delivery. Here we evaluated encapsulation of monoclonal antibody M75 directed to tumor biomarker carbonic anhydrase IX (CA IX) into alginate microbeads (SA-beads) or microcapsules made of sodium alginate, cellulose sulfate, and poly(methylene-co-guanidine) (PMCG). M75 antibody release was quantified using ELISA and its binding properties were assessed by immunodetection methods.
View Article and Find Full Text PDFThe efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.
View Article and Find Full Text PDFDirect comparison of key physical and chemical-engineering properties of two representative matrices for multipurpose immobilisations was performed for the first time. Polyvinyl alcohol lens-shaped particles LentiKats® and polyelectrolyte complex microcapsules were characterised by advanced techniques with respect to the size distribution of the particles, their inner morphology as revealed by fluorescent probe staining, mechanical resistance, size-exclusion properties, determination of effective diffusion coefficient and environmental scanning electron microscope imaging. While spherical polyelectrolyte complex microcapsules composed of a rigid semipermeable membrane and a liquid core are almost uniform in shape and size (diameter of 0.
View Article and Find Full Text PDFPericapsular fibrotic overgrowth (PFO) is associated with poor survival of encapsulated pancreatic islets. Modification of the microcapsule membrane aimed at preventing PFO should improve graft survival. This study investigated the effect of macromolecular Corline Heparin Conjugate (CHC) binding on intrinsic properties of alginate microcapsules and assessed the anti-fibrotic potential of this strategy both in vitro and in vivo.
View Article and Find Full Text PDFCell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres.
View Article and Find Full Text PDFA novel cationic polymer poly(N,N-dimethyl-N-[3-(methacroylamino) propyl]-N-[2-[(2-nitrophenyl)methoxy]-2-oxo-ethyl]ammonium chloride) is synthesized by free-radical polymerization of N-[3-(dimethylamino)propyl] methacrylamide and subsequent quaternization with o-nitrobenzyl 2-chloroacetate. The photolabile o-nitrobenzyl carboxymethyl pendant moiety is transformed to the zwitterionic carboxybetaine form upon the irradiation at 365 nm. This feature is used to condense and, upon the light irradiation, to release double-strand DNA tested by gel electrophoresis and surface plasmon resonance experiments as well as to switch the antibacterial activity to non-toxic character demonstrated for Escherichia coli bacterial cells in solution and at the surface using the self-assembled monolayers.
View Article and Find Full Text PDFBackground: The main hurdles to the widespread use of islet transplantation for the treatment of type 1 diabetes continue to be the insufficient number of appropriate donors and the need for immunosuppression. Microencapsulation has been proposed as a means to protect transplanted islets from the host's immune system.
Methods: This study investigated the function of human pancreatic islets encapsulated in Ca(2+) /Ba(2+) -alginate microbeads intraperitoneally transplanted in diabetic Balb/c mice.
The cytokine-inducing potential of various microspheres were evaluated in a short-time screening assay of lepirudin-anticoagulated human whole blood utilizing the Bio-Plex Human cytokine 27-plex system. The inflammatory cytokines IL-1β, TNF and IL-6; the anti-inflammatory mediators IL-1ra and IL-10; the chemokines IL-8, MIP-1α and MCP-1; and the growth factor VEGF were induced by polycation (poly-l-lysine or poly(methylene-co-guanidine)) containing microspheres. Alginate microspheres without polycations did not induce the corresponding cytokine panel, nor did soluble alginate.
View Article and Find Full Text PDFPreparation of planar alginate hydrogels by external gelling requires slow rate of exposure of alginate solution to gelling ions to control gelling process and hydrogel properties. We tackled this issue by exposing solution of sodium alginate to solution of CaCl2 applied as aerosol at exposure rate of 7.5 mg cm(-2) s(-1).
View Article and Find Full Text PDFMicrobeads of alginate crosslinked with Ca(2+) and/or Ba(2+) are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates.
View Article and Find Full Text PDF