Publications by authors named "Lacie Newton"

Although patterns of population genomic variation are well-studied in animals, there remains room for studies that focus on non-model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome-wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa.

View Article and Find Full Text PDF

Petaluridae (Odonata: Anisoptera) is a relict dragonfly family, having diverged from its sister family in the Jurassic, of eleven species that are notable among odonates (dragonflies and damselflies) for their exclusive use of fen and bog habitats, their burrowing behavior as nymphs, large body size as adults, and extended lifespans. To date, several nodes within this family remain unresolved, limiting the study of the evolution of this peculiar family. Using an anchored hybrid enrichment dataset of over 900 loci we reconstructed the species tree of Petaluridae.

View Article and Find Full Text PDF

Odonata is an order of insects that comprises ∼6500 species. They are among the earliest flying insects, and one of the first diverging lineages in the Pterygota. Odonate evolution has been a topic of research for over 100 years, with studies focusing primarily on their flight behavior, color, vision, and aquatic juvenile lifestyles.

View Article and Find Full Text PDF

Species delimitation is an imperative first step toward understanding Earth's biodiversity, yet what constitutes a species and the relative importance of the various processes by which new species arise continue to be debatable. Species delimitation in spiders has traditionally used morphological characters; however, certain mygalomorph spiders exhibit morphological homogeneity despite long periods of population-level isolation, absence of gene flow, and consequent high degrees of molecular divergence. Studies have shown strong geographic structuring and significant genetic divergence among several species complexes within the trapdoor spider genus , most of which are restricted to the California Floristic Province (CAFP) biodiversity hotspot.

View Article and Find Full Text PDF

Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimitation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, the Antrodiaetus unicolor species complex containing two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution.

View Article and Find Full Text PDF