Publications by authors named "Lachlan J Schwarz"

Oxidative stress and inflammation are known to be linked to the development of chronic inflammatory conditions, such as type 2 diabetes and cardiovascular disease. Dietary polyphenols have been demonstrated to contain potent bioactivity against specific inflammatory pathways. Rice bran (RB), a by-product generated during the rice milling process, is normally used in animal feed or discarded due to its rancidity.

View Article and Find Full Text PDF

Oxidative stress is known to modulate insulin secretion and initiate gene alterations resulting in impairment of β-cell function and type 2 diabetes mellitus (T2DM). Rice bran (RB) phenolic extracts contain bioactive properties that may target metabolic pathways associated with the pathogenesis of T2DM. This study aimed to examine the effect of stabilized RB phenolic extracts on the expression of genes associated with β-cell function such as glucose transporter 2 (), pancreatic and duodenal homeobox 1 (), sirtuin 1 (), mitochondrial transcription factor A (), and insulin 1 () in addition to evaluating its impact on glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

This investigation describes an integrated workflow for the parallel extraction and recovery of polyphenols and phytosterols from Pinot noir grape seeds. Using (E)-resveratrol and stigmasterol as exemplars, the approach employs two different molecular imprinted polymers in tandem for the extraction of these compounds and their subsequent analysis by capillary high-performance liquid chromatography (capHPLC) interfaced with electrospray ionisation tandem mass spectrometry (ESI MS/MS). Information on the selectivity of the solid-phase extraction processes was obtained through analysis of the binding behaviour of (E)-resveratrol- and stigmasterol-imprinted polymers using structurally similar polyphenols or phytosterols with the extent of binding determined from the capHPLC-ion trap ESI MS/MS data.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) are two chronic diseases that have claimed more lives globally than any other disease. Dietary supplementation of functional foods containing bioactive compounds is recognised to result in improvements in free-radical-mediated oxidative stress. Emerging evidence indicates that bioactive compounds derived from rice bran (RB) have therapeutic potential against cellular oxidative stress.

View Article and Find Full Text PDF

Oxidative stress, inflammation and endothelial dysfunction are associated with the development of cardiovascular and metabolic diseases. Phenolic extracts derived from rice bran (RB) are recognised to have antioxidant and anti-inflammatory potential. However, the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

Fungal bunch rot of grapes leads to production of detrimental flavour compounds, some of which are well characterised but others remain unidentified. The current study uses an untargeted metabolomics approach to classify volatile profiles of grape juices based on the presence of different fungal pathogens. Individual grape berries were inoculated with Botrytis cinerea, Penicillium expansum, Aspergillus niger or A.

View Article and Find Full Text PDF

This investigation describes a general procedure for the selectivity mapping of molecularly imprinted polymers, using (E)-resveratrol-imprinted polymers as the exemplar, and polyphenolic compounds present in Pinot noir grape skin extracts as the test compounds. The procedure is based on the analysis of samples generated before and after solid-phase extraction of (E)-resveratrol and other polyphenols contained within the Pinot noir grape skins using (E)-resveratrol-imprinted polymers. Capillary reversed-phase high-performance liquid chromatography (RP-HPLC) and electrospray ionisation tandem mass spectrometry (ESI MS/MS) was then employed for compound analysis and identification.

View Article and Find Full Text PDF

This review describes recent advances associated with the development of surface imprinting methods for the synthesis of polymeric membranes and thin films, which possess the capability to selectively and specifically recognize biomacromolecules, such as proteins and single- and double-stranded DNA, employing "epitope" or "whole molecule" approaches. Synthetic procedures to create different molecularly imprinted polymer membranes or thin films are discussed, including grafting/in situ polymerization, drop-, dip-, or spin-coating procedures, electropolymerization as well as micro-contact or stamp lithography imprinting methods. Highly sensitive techniques for surface characterization and analyte detection are described, encompassing luminescence and fluorescence spectroscopy, X-ray photoelectron spectroscopy, FTIR spectroscopy, surface-enhanced Raman spectroscopy, atomic force microscopy, quartz crystal microbalance analysis, cyclic voltammetry, and surface plasmon resonance.

View Article and Find Full Text PDF

A semi-covalent imprinting strategy has been developed for the synthesis of molecularly-imprinted polymers specific for the fungal sterol, ergosterol, a biological precursor of vitamin D. This imprinting approach involved a novel post-synthesis cleavable monomer-template composite, namely ergosteryl methacrylate, and resulted in the formation of an imprinted polymer that selectively and efficiently recognized ergosterol through non-covalent interactions. The derived molecularly-imprinted polymer and the corresponding non-imprinted polymer were systematically evaluated for their selectivity towards ergosterol via static and dynamic binding studies using various ergosteryl esters (e.

View Article and Find Full Text PDF

Molecularly imprinted polymers (MIPs) templated with either the phytoalexin, (E)-resveratrol, or its structural analog, 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide, have been used in tandem for the sequential extraction of (E)-resveratrol from aqueous peanut meal extracts in high purity and in near quantitative yields. Re-processing of the (E)-resveratrol-depleted peanut meal extract with the 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide imprinted MIP yielded additional polyphenolic components, identified as A-type procyanidins. Tandem liquid chromatography-electrospray ionization mass spectrometry confirmed the identity and purity of the isolated products.

View Article and Find Full Text PDF

Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability.

View Article and Find Full Text PDF

Non-covalent and covalent imprinting strategies have been investigated for the synthesis of stigmasterol imprinted polymers. The synthesized molecularly imprinted polymers (MIPs) were then evaluated for their recognition and selectivity towards stigmasterol via static and dynamic batch-binding assays and their performance measured against control non-imprinted polymers (NIPs). MIPs prepared using the conventional non-covalent imprinting method displayed little to no binding affinity for stigmasterol under various conditions.

View Article and Find Full Text PDF

Red wine has long been credited as a good source of health-beneficial antioxidants, including the bioactive polyphenols catechin, quercetin, and (E)-resveratrol. In this paper, we report the application of reusable molecularly imprinted polymers (MIPs) for the selective and robust solid-phase extraction (SPE) and rapid analysis of (E)-resveratrol (LOD=8.87×10(-3) mg/L, LOQ=2.

View Article and Find Full Text PDF

(E)-Resveratrol imprinted polymers have been rationally designed with the aid of molecular modelling and NMR spectroscopic titration techniques to determine the optimal ratio of the template to functional monomer for polymer formation. Based on this approach, (E)-resveratrol imprinted polymers were prepared via non-covalent self-assembly with the functional monomer 4-vinylpyridine (4VP) in a 1:3 molar ratio. Polymerisation in the presence of a cross-linker resulted in rigid block copolymers that had selective capacities towards (E)-resveratrol (e.

View Article and Find Full Text PDF

Molecularly imprinted solid phase extraction (MISPE) has been employed to isolate and concentrate bioactive polyphenols from peanut press waste. To this end, a molecularly imprinted polymer (MIP) templated with the phytoalexin (E)-resveratrol has been prepared via self-assembly with the functional monomer 4-vinylpyridine (4VP) in a 1:3 molar ratio. Subsequent molecular interrogation of the MIP binding sites demonstrated preferential structural selectivity for (E)-resveratrol with respect to other structurally related naturally occurring compounds.

View Article and Find Full Text PDF