In this study, Monte Carlo codes, Geant4 and MCNP6, were used to characterize the fast neutron therapeutic beam produced at iThemba LABS in South Africa. Experimental and simulation results were compared using the latest generation of Silicon on Insulator (SOI) microdosimeters from the Centre for Medical Radiation Physics (CMRP). Geant4 and MCNP6 were able to successfully model the neutron gantry and simulate the expected neutron energy spectrum produced from the reaction by protons bombarding a Be target.
View Article and Find Full Text PDFPurpose: This work has two related objectives. The first is to estimate the relative biological effectiveness of two radioactive heavy ion beams based on experimental measurements, and compare these to the relative biological effectiveness of corresponding stable isotopes to determine whether they are therapeutically equivalent. The second aim is to quantitatively compare the quality of images acquired postirradiation using an in-beam whole-body positron emission tomography scanner for range verification quality assurance.
View Article and Find Full Text PDFBackground: The aim of this study was to measure the microdosimetric distributions of a carbon pencil beam scanning (PBS) and passive scattering system as well as to evaluate the relative biological effectiveness (RBE) of different ions, namely C, N, and O, using a silicon-on-insulator (SOI) microdosimeter with well-defined 3D-sensitive volumes (SV). Geant4 simulations were performed with the same experimental setup and results were compared to the experimental results for benchmarking.
Method: Two different silicon microdosimeters with rectangular parallelepiped and cylindrical shaped SVs, both 10 μm in thickness were used in this study.
Purpose: Microdosimetry is a vital tool for assessing the microscopic patterns of energy deposition by radiation, which ultimately govern biological effect. Solid-state, silicon-on-insulator microdosimeters offer an approach for making microdosimetric measurements with high spatial resolution (on the order of tens of micrometers). These high-resolution, solid-state microdosimeters may therefore play a useful role in characterizing proton radiotherapy fields, particularly for making highly resolved measurements within the Bragg peak region.
View Article and Find Full Text PDFPurpose: This work aims to characterize a proton pencil beam scanning (PBS) and passive double scattering (DS) systems as well as to measure parameters relevant to the relative biological effectiveness (RBE) of the beam using a silicon on insulator (SOI) microdosimeter with well-defined 3D sensitive volumes (SV). The dose equivalent downstream and laterally outside of a clinical PBS treatment field was assessed and compared to that of a DS beam.
Methods: A novel silicon microdosimeter with well-defined 3D SVs was used in this study.
Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic C beam, based on Monte Carlo simulations.
View Article and Find Full Text PDF