Tropical Animal Health and Production is a journal founded 55 years ago. It is dedicated to the publication of results of original research, investigation, and observation in all fields of animal health, welfare and production which may lead to improved health and productivity of livestock and better utilization of animal resources in tropical, subtropical and similar environments. Research is in strong alignment with the United Nations' Sustainable Development Goals, particularly No Poverty, Zero Hunger, and Good Health and Well-being.
View Article and Find Full Text PDFFibrosis is a pathological state caused by excess deposition of extracellular matrix proteins in a tissue. Male bovine growth hormone (bGH) transgenic mice experience metabolic dysfunction with a marked decrease in lifespan and with increased fibrosis in several tissues including white adipose tissue (WAT), which is more pronounced in the subcutaneous (Sc) depot. The current study expanded on these initial findings to evaluate WAT fibrosis in female bGH mice and the role of transforming growth factor (TGF)-β in the development of WAT fibrosis.
View Article and Find Full Text PDFKnockdown of GH receptor (GHR) in melanoma cells downregulates ATP-binding cassette-containing (ABC) transporters and sensitizes them to anti-cancer drug treatments. Here we aimed to determine whether a GHR antagonist (GHRA) could control cancer growth by sensitizing tumors to therapy through downregulation of ABC transporters . We intradermally inoculated Fluc-B16-F10 mouse melanoma cells into GHA mice, transgenic for a GHR antagonist (GHRA), and observed a marked reduction in tumor size, mass and tumoral GH signaling.
View Article and Find Full Text PDFThe gut microbiota is an essential regulator of many aspects of host physiology. Disruption of gut microbial communities affects gut-brain communication which ultimately can manifest as changes in brain function and behaviour. Transient changes in gut microbial composition can be induced by various intrinsic and extrinsic factors, however, it is possible that enduring shifts in the microbiota composition can be achieved by perturbation at a timepoint when the gut microbiota has not fully matured or is generally unstable, such as during early life or ageing.
View Article and Find Full Text PDFContextual fear conditioning (CFC) in rodents is the most widely used behavioural paradigm in neuroscience research to elucidate the neurobiological mechanisms underlying learning and memory. It is based on the pairing of an aversive unconditioned stimulus (US; e.g.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2020
The gastrointestinal tract houses a reservoir of bacterial-derived enzymes that can directly catalyze the metabolism of drugs, dietary elements and endogenous molecules. Both host and environmental factors may influence this enzymatic activity, with the potential to dictate the availability of the biologically-active form of endogenous molecules in the gut and influence inter-individual variation in drug metabolism. We aimed to investigate the influence of the microbiota, and the modulation of its composition, on fecal enzymatic activity.
View Article and Find Full Text PDFAdolescence is a critical developmental period that is characterised by growth spurts and specific neurobiological, neuroimmune and behavioural changes. In tandem the gut microbiota, which is a key player in the regulation of health and disease, is shaped during this time period. Diet is one of the most important regulators of microbiota composition.
View Article and Find Full Text PDFThe translation initiation repressor 4E-BP2 is deamidated in the brain on asparagines N99/N102 during early postnatal brain development. This post-translational modification enhances 4E-BP2 association with Raptor, a central component of mTORC1 and alters the kinetics of excitatory synaptic transmission. We show that 4E-BP2 deamidation is neuron specific, occurs in the human brain, and changes 4E-BP2 subcellular localization, but not its disordered structure state.
View Article and Find Full Text PDFBackground: The aim of this study was to develop a method to study genome-wide local translation in biochemically isolated synaptic fractions (synaptoneurosomes). This methodology is of particular interest for neurons, due to the cardinal role of local translational control in neuronal sub-compartments, such as dendrites, for plasticity, learning, memory, and for disorders of the nervous system.
New Method: We combined established methods for purifying synaptoneurosomes with translational profiling (ribosome profiling), a method that employs unbiased next generation sequencing to simultaneously assess transcription and translation in a single sample.
The bacteriophage Mu Com is a small zinc finger protein that binds to its cognate mom mRNA and activates its translation. The Mom protein, in turn, elicits a chemical modification (momification) of the bacteriophage genome, rendering the DNA resistant to cleavage by bacterial restriction endonucleases, and thereby protecting it from defense mechanisms of the host. We examined the basis of specificity in Com-RNA interactions by in vitro selection and probing of RNA structure.
View Article and Find Full Text PDFProtein synthesis in eukaryotic cells is a complex, multi-step and tightly regulated process. Translation initiation, the rate limiting step in protein synthesis, is dependent on the activity of eukaryotic translation Initiation Factor 4E (eIF4E). eIF4E is the cap-binding protein which, in synergy with proteins such as the helicase eIF4A and the scaffolding protein eIF4G, binds to mRNA, allowing the recruitment of ribosomes and translation initiation.
View Article and Find Full Text PDFThe secondary isotope shifts of six molecular hydrogen isotopologues (H, D, T, HD, HT, and DT) were measured using gas-phase nuclear magnetic resonance spectroscopy. It was found that these isotope shifts are in satisfying agreement with performed ab initio quantum chemistry computations. However, there is a small systematic discrepancy between results of experiments and computations, i.
View Article and Find Full Text PDFThe complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling.
View Article and Find Full Text PDFRNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment.
View Article and Find Full Text PDFRNA molecules play fundamental roles in cellular processes. Their function and interactions with other biomolecules are dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized.
View Article and Find Full Text PDFWhile anxiety disorders are the brain disorders with the highest prevalence and constitute a major burden for society, a considerable number of affected people are still treated insufficiently. Thus, in an attempt to identify potential new anxiolytic drug targets, neuropeptides have gained considerable attention in recent years. Compared to classical neurotransmitters they often have a regionally restricted distribution and may bind to several distinct receptor subtypes.
View Article and Find Full Text PDFThe amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem.
View Article and Find Full Text PDFNeuropharmacology
December 2015
The amygdala is fundamental for associative fear and extinction learning. Recently, also the central nucleus of the amygdala (CEA) has emerged as a site of plasticity actively controlling efferent connections to downstream effector brain areas. Although synaptic transmission is primarily mediated by glutamate and GABA, neuropeptides critically influence the overall response.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2016
Emotions control evolutionarily-conserved behavior that is central to survival in a natural environment. Imbalance within emotional circuitries, however, may result in malfunction and manifestation of anxiety disorders. Thus, a better understanding of emotional processes and, in particular, the interaction of the networks involved is of considerable clinical relevance.
View Article and Find Full Text PDFThis paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement.
View Article and Find Full Text PDFIn the recent years, it has become clear that a wide range of regulatory functions in bacteria are performed by riboswitches--regions of mRNA that change their structure upon external stimuli. Riboswitches are therefore attractive targets for drug design, molecular engineering, and fundamental research on regulatory circuitry of living cells. Several mechanisms are known for riboswitches controlling gene expression, but most of them perform their roles by ligand binding.
View Article and Find Full Text PDFPhenomenologically important quantum dissipative processes include blackbody friction (an atom absorbs counterpropagating blueshifted photons and spontaneously emits them in all directions, losing kinetic energy) and noncontact van der Waals friction (in the vicinity of a dielectric surface, the mirror charges of the constituent particles inside the surface experience drag, slowing the atom). The theoretical predictions for these processes are modified upon a rigorous quantum electrodynamic treatment, which shows that the one-loop "correction" yields the dominant contribution to the off-resonant, gauge-invariant, imaginary part of the atom's polarizability at room temperature, for typical atom-surface interactions. The tree-level contribution to the polarizability dominates at high temperature.
View Article and Find Full Text PDF