Publications by authors named "Lacey M Litchfield"

Purpose: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy (ET) are the standard first-line treatment for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC); however, disease progression occurs in almost all patients and additional treatment options are needed. Herein we report outcomes of the postMONARCH trial investigating a switch in ET with/without CDK4/6 inhibition with abemaciclib after disease progression on CDK4/6i.

Methods: This double-blind, randomized Phase III study enrolled patients with disease progression on prior CDK4/6i plus aromatase inhibitor as initial therapy for advanced disease or recurrence on/after adjuvant CDK4/6i+ET.

View Article and Find Full Text PDF

Purpose: The monarcHER trial has shown that abemaciclib, a cyclin-dependent kinase 4 and 6 inhibitor, combined with fulvestrant and trastuzumab, improves progression-free survival (PFS) in hormone receptor-positive (HR+), HER2-positive (HER2+) advanced breast cancer (ABC) compared with standard-of-care (SOC) chemotherapy combined with trastuzumab. We report the final overall survival (OS) analysis, updated safety and efficacy data, and exploratory biomarker results from monarcHER.

Patients And Methods: monarcHER (NCT02675231), a randomized, multicenter, open-label, phase II trial, enrolled 237 patients across Arm A (abemaciclib, trastuzumab, fulvestrant), Arm B (abemaciclib, trastuzumab), and Arm C (SOC chemotherapy, trastuzumab).

View Article and Find Full Text PDF

Purpose: To identify potential predictors of response and resistance mechanisms in patients with hormone receptor-positive (HR+), HER2-negative (HER2-) advanced breast cancer (ABC) treated with the cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor abemaciclib ± endocrine therapy (ET), baseline and acquired genomic alterations in circulating tumor DNA (ctDNA) were analyzed and associated with clinical outcomes.

Experimental Design: MONARCH 3: postmenopausal women with HR+, HER2- ABC and no prior systemic therapy in the advanced setting were randomly assigned to abemaciclib or placebo plus nonsteroidal aromatase inhibitor (NSAI). nextMONARCH: women with HR+, HER2- metastatic breast cancer that progressed on/after prior ET and chemotherapy were randomly assigned to abemaciclib alone (two doses) or plus tamoxifen.

View Article and Find Full Text PDF

Purpose: We explored the clinical and genomic characteristics of hormone receptor-positive (HR+), HER2-negative (HER2-) metastatic breast cancer (MBC) after progression on cyclin-dependent kinase 4 and 6 inhibitors (CDK4 and 6i) ± endocrine therapy (ET) to understand potential resistance mechanisms that may aid in identifying treatment options.

Experimental Design: Patients in the United States with HR+, HER2- MBC had tumor biopsies collected from a metastatic site during routine care following progression on a CDK4 and 6i ± ET (CohortPost) or prior to initiating CDK4 and 6i treatment (CohortPre) and analyzed using a targeted mutation panel and RNA-sequencing. Clinical and genomic characteristics were described.

View Article and Find Full Text PDF

Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4 and 6) are approved for the treatment of subsets of patients with hormone receptor positive (HR+) breast cancer (BC). In metastatic disease, strategies involving endocrine therapy combined with CDK4 and 6 inhibitors (CDK4 and 6i) improve clinical outcomes in HR+ BCs. CDK4 and 6i prevent retinoblastoma tumor suppressor protein phosphorylation, thereby blocking the transcription of E2F target genes, which in turn inhibits both mitogen and estrogen-mediated cell proliferation.

View Article and Find Full Text PDF

Background: Cyclin-dependent kinases (CDK) 4 and 6 regulate G1 to S cell cycle progression and are often altered in cancers. Abemaciclib is a selective inhibitor of CDK4 and CDK6 approved for administration on a continuous dosing schedule as monotherapy or as combination therapy with an aromatase inhibitor or fulvestrant in patients with advanced or metastatic breast cancer. This Phase 1b study evaluated the safety and tolerability, pharmacokinetics, and antitumor activity of abemaciclib in combination with endocrine therapy for metastatic breast cancer (MBC), including aromatase inhibitors (letrozole, anastrozole, or exemestane) or tamoxifen.

View Article and Find Full Text PDF

Purpose: PIK3CA and ESR1 mutations have been implicated in resistance to endocrine therapy (ET) in HR+, HER2- advanced breast cancer (ABC). Inhibition of CDK4 and 6 has been hypothesized as a therapeutic strategy to overcome endocrine resistance in patients with PIK3CA- or ESR1-mutant breast cancers. The objective of this exploratory analysis was to assess efficacy of abemaciclib plus fulvestrant in patients with or without PIK3CA or ESR1 mutations in MONARCH 2.

View Article and Find Full Text PDF

Purpose: Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (CDK4/6i) are highly effective against estrogen receptor-positive (ER)/HER2 breast cancer; however, intrinsic and acquired resistance is common. Elucidating the molecular features of sensitivity and resistance to CDK4/6i may lead to identification of predictive biomarkers and novel therapeutic targets, paving the way toward improving patient outcomes.

Experimental Design: Parental breast cancer cells and their endocrine-resistant derivatives (EndoR) were used.

View Article and Find Full Text PDF

Mechanisms driving resistance to cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) in hormone receptor-positive (HR) breast cancer have not been clearly defined. Whole-exome sequencing of 59 tumors with CDK4/6i exposure revealed multiple candidate resistance mechanisms including loss, activating alterations in , and , and loss of estrogen receptor expression. experiments confirmed that these alterations conferred CDK4/6i resistance.

View Article and Find Full Text PDF

Aberrant activation of mitogenic signaling pathways in cancer promotes growth and proliferation of cells by activating mTOR and S6 phosphorylation, and D-cyclin kinases and Rb phosphorylation, respectively. Correspondingly, inhibition of phosphorylation of both Rb and S6 is required for robust anti-tumor efficacy of drugs that inhibit cell signaling. The best-established mechanism of mTOR activation in cancer is via PI3K/Akt signaling, but mTOR activity can also be stimulated by CDK4 and PIM kinases.

View Article and Find Full Text PDF

The tumor microenvironment (TME) plays a pivotal role in cancer progression, and, in ovarian cancer (OvCa), the primary TME is the omentum. Here, we show that the diabetes drug metformin alters mesothelial cells in the omental microenvironment. Metformin interrupts bidirectional signaling between tumor and mesothelial cells by blocking OvCa cell TGF-β signaling and mesothelial cell production of CCL2 and IL-8.

View Article and Find Full Text PDF

Abemaciclib, an inhibitor of cyclin dependent kinases 4 and 6 (CDK4/6), has recently been approved for the treatment of hormone receptor-positive breast cancer. In this study, we use murine syngeneic tumor models and in vitro assays to investigate the impact of abemaciclib on T cells, the tumor immune microenvironment and the ability to combine with anti-PD-L1 blockade. Abemaciclib monotherapy resulted in tumor growth delay that was associated with an increased T cell inflammatory signature in tumors.

View Article and Find Full Text PDF

Most cancers preserve functional retinoblastoma (Rb) and may, therefore, respond to inhibition of D-cyclin-dependent Rb kinases, CDK4 and CDK6. To date, CDK4/6 inhibitors have shown promising clinical activity in breast cancer and lymphomas, but it is not clear which additional Rb-positive cancers might benefit from these agents. No systematic survey to compare relative sensitivities across tumor types and define molecular determinants of response has been described.

View Article and Find Full Text PDF

Repurposing metformin for cancer therapy is attractive due to its safety profile, epidemiological evidence, and encouraging data from human clinical trials. Although it is known to systemically affect glucose metabolism in liver, muscle, gut, and other tissues, the molecular determinants that predict a patient response in cancer remain unknown. Here, we carry out an integrative metabolomics analysis of metformin action in ovarian cancer.

View Article and Find Full Text PDF

Increasing interest in repurposing the diabetic medication metformin for cancer treatment has raised important questions about the translation of promising preclinical findings to therapeutic efficacy, especially in non-diabetic patients. A significant limitation of the findings to date is the use of supraphysiologic metformin doses and hyperglycemic conditions in vitro. Our goals were to determine the impact of hyperglycemia on metformin response and to address the applicability of metformin as a cancer therapeutic in non-diabetic patients.

View Article and Find Full Text PDF

Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h.

View Article and Find Full Text PDF

A model of tumor metabolism is proposed that describes how the complementary metabolic functions of the local stroma and the tumor cells contribute to cancer progression. Cancer cells alter the metabolism of cancer-associated fibroblasts to obtain lactate and amino acids, which are utilized for energy production, rapid growth, and resistance to chemotherapy drugs. Cancer cells use glutamine supplied by cancer-associated fibroblasts to replenish tricarboxylic acid cycle intermediates and as a nitrogen source for nucleotide synthesis.

View Article and Find Full Text PDF

Objective: There is increasing preclinical evidence indicating that metformin, a medication commonly used for type 2 diabetes mellitus, may protect against cancer. Motivated by this emerging evidence we asked 2 questions: (1) can metformin prevent ovarian cancer growth by altering metabolism and (2) will metformin increase sensitivity to chemotherapy.

Study Design: The effect of metformin in ovarian cancer was tested in vitro and with 2 different mouse models.

View Article and Find Full Text PDF

Although oncomiR miR-21 is highly expressed in liver and overexpressed in hepatocellular carcinoma (HCC), its regulation is uncharacterized. We examined the effect of physiologically relevant nanomolar concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEA-S) on miR-21 expression in HepG2 human hepatoma cells. 10nM DHEA and DHEA-S increase pri-miR-21 transcription in HepG2 cells.

View Article and Find Full Text PDF

Endocrine therapies have been successfully used for breast cancer patients with estrogen receptor α (ERα) positive tumors, but ~40% of patients relapse due to endocrine resistance. β-glucans are components of plant cell walls that have immunomodulatory and anticancer activity. The objective of this study was to examine the activity of β-D-glucan, purified from barley, in endocrine-sensitive MCF-7 versus endocrine-resistant LCC9 and LY2 breast cancer cells.

View Article and Find Full Text PDF

COUP-TFII is reduced in endocrine-resistant breast cancer cells and is negatively associated with tumor grade. Transient re-expression of COUP-TFII restores antiestrogen sensitivity in resistant LCC2 and LCC9 cells and repression of COUP-TFII results in antiestrogen-resistance in MCF-7 endocrine-sensitive cells. We addressed the hypothesis that reduced COUP-TFII expression in endocrine-resistant breast cancer cells results from epigenetic modification.

View Article and Find Full Text PDF

Reduced COUP-TFII expression contributes to endocrine resistance in breast cancer cells. Endocrine-resistant breast cancer cells have higher NFkappa B (NFκB) activity and target gene expression. The goal of this study was to determine if COUP-TFII modulates NFκB activity.

View Article and Find Full Text PDF