Glioblastoma (GBM) is the most common and lethal primary brain tumor. The standard treatment for newly diagnosed GBM includes surgical resection, when feasible, followed by radiotherapy and temozolomide-based chemotherapy. Upon disease progression, the anti-vascular endothelial growth factor-A (VEGF-A) monoclonal antibody bevacizumab, can be considered.
View Article and Find Full Text PDFBackground: Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated.
View Article and Find Full Text PDFThe vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases.
View Article and Find Full Text PDFIn recent years, accumulating evidence from preclinical and clinical studies consistently indicated that physical activity/exercise plays a crucial role in reducing the incidence and recurrence of various malignancies, by exerting a beneficial modulation of cancer hallmarks. Moreover, physical activity is suggested to attenuate certain adverse effects of anticancer therapy, including the reduction of cardiovascular toxicity and symptoms related to depression and anxiety, among others, while preserving muscular strength. In the case of melanoma, the relationship with physical activity has been critically debated.
View Article and Find Full Text PDFIn the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease.
View Article and Find Full Text PDFMelanoma resistance to BRAF inhibitors (BRAFi) is often accompanied by a switch from a proliferative to an invasive phenotype. Therefore, the identification of signaling molecules involved in the development of metastatic properties by resistant melanoma cells is of primary importance. We have previously demonstrated that activation of neuropilin-1 (NRP-1) by platelet-derived growth factor (PDGF)-C confers melanoma cells with an invasive behavior similar to that of BRAFi resistant tumors.
View Article and Find Full Text PDFThe immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults.
View Article and Find Full Text PDFPlacenta growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family involved in tumor-associated angiogenesis and melanoma invasion of the extra-cellular matrix (ECM) through activation of membrane VEGF receptor 1 (VEGFR-1). A soluble VEGFR-1 (sVEGFR-1) form is released in the ECM, where it sequesters proangiogenic factors and stimulates endothelial or tumor cell adhesion and chemotaxis through interaction with α5β1 integrin. The anti-VEGFR-1 monoclonal antibody (D16F7 mAb) inhibits VEGF-A or PlGF-mediated signal transduction without affecting ligand interaction, thus preserving sVEGFR-1 decoy function.
View Article and Find Full Text PDFDespite the significant improvements in advanced melanoma therapy, there is still a pressing need for biomarkers that can predict patient response and prognosis, and therefore support rational treatment decisions. Here, we investigated whether circulating miRNAs could be biomarkers of clinical outcomes in patients treated with targeted therapy. Using next-generation sequencing, we profiled plasma miRNAs at baseline and at progression in patients treated with BRAF inhibitors (BRAFi) or BRAFi + MEKi.
View Article and Find Full Text PDFBackground: Diabetic retinopathy (DR) is a microvascular complication of diabetes with a heavy impact on the quality of life of subjects and with a dramatic burden for health and economic systems on a global scale. Although the pathogenesis of DR is largely unknown, several preclinical data have pointed out to a main role of Muller glia (MG), a cell type which spans across the retina layers providing nourishment and support for Retina Ganglion Cells (RGCs), in sensing hyper-glycemia and in acquiring a pro-inflammatory polarization in response to this insult.
Results: By using a validated experimental model of DR in vitro, rMC1 cells challenged with high glucose, we uncovered the induction of an early (within minutes) and atypical Nuclear Factor-kB (NF-kB) signalling pathway regulated by a calcium-dependent calmodulin kinase II (CamKII)-proteasome axis.
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass.
View Article and Find Full Text PDFThe immune checkpoint cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is an inhibitory regulator of T-cell mediated responses that has been investigated as target of monoclonal antibodies (mAbs) for cancer immunotherapy. The anti-CTLA-4 mAb ipilimumab represents the first immune checkpoint inhibitor that significantly improved overall survival in patients with unresectable/metastatic melanoma. The subsequent approved indications (often in the first-line setting) for melanoma and other advanced/metastatic solid tumors always require ipilimumab combination with nivolumab, an anti-programmed cell death protein 1 (PD-1) mAb.
View Article and Find Full Text PDFBackground: Neuropathic pain is a clinically relevant adverse effect of several anticancer drugs that markedly impairs patients' quality of life and frequently leads to dose reduction or therapy discontinuation. The poor knowledge about the mechanisms involved in neuropathy development and pain chronicization, and the lack of effective therapies, make treatment of chemotherapy-induced neuropathic pain an unmet medical need. In this context, the vascular endothelial growth factor A (VEGF-A) has emerged as a candidate neuropathy hallmark and its decrease has been related to pain relief.
View Article and Find Full Text PDFImmunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit.
View Article and Find Full Text PDFNeuropilin-1 (NRP-1) is a semaphorin receptor involved in neuron guidance, and a co-receptor for selected isoforms of the vascular endothelial growth factor (VEGF) family. NRP-1 binding to several VEGF-A isoforms promotes growth factor interaction with VEGF receptor (VEGFR)-2, increasing receptor phosphorylation. Additionally, NRP-1 directly interacts with VEGFR-1, but this interaction competes with NRP-1 binding to VEGF-A165 and does not enhance VEGFR-1 activation.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) represent a promising therapeutic intervention for a variety of advanced/metastatic solid tumors, including melanoma, but in a large number of cases, patients fail to establish a sustained anti-tumor immunity and to achieve a long-lasting clinical benefit. Cells of the tumor micro-environment such as tumor-associated M2 macrophages (M2-TAMs) have been reported to limit the efficacy of immunotherapy, promoting tumor immune evasion and progression. Thus, strategies targeting M2-TAMs have been suggested to synergize with immune checkpoint blockade.
View Article and Find Full Text PDFThe glioblastoma (GB) microenvironment includes cells of the innate immune system identified as glioma-associated microglia/macrophages (GAMs) that are still poorly characterized. A potential role on the mechanisms regulating GAM activity might be played by the endoplasmic reticulum protein ERp57/PDIA3 (protein disulfide-isomerase A3), the modulation of which has been reported in a variety of cancers. Moreover, by using The Cancer Genome Atlas database, we found that overexpression of PDIA3 correlated with about 55% reduction of overall survival of glioma patients.
View Article and Find Full Text PDFOn March 11, 2020, the World Health Organization (WHO) declared the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) a global pandemic. As of July 2020, SARS-CoV-2 has infected more than 14 million people and provoked more than 590,000 deaths, worldwide. From the beginning, a variety of pharmacological treatments has been empirically used to cope with the life-threatening complications associated with Corona Virus Disease 2019 (COVID-19).
View Article and Find Full Text PDFThe vascular endothelial growth factor receptor-1 (VEGFR-1) is a membrane receptor for VEGF-A, placenta growth factor (PlGF) and VEGF-B that plays a crucial role in melanoma invasiveness, vasculogenic mimicry and tumor-associated angiogenesis. Furthermore, activation of VEGFR-1 is involved in the mobilization of myeloid progenitors from the bone marrow that infiltrate the tumor. Myeloid-derived suppressor cells and tumor-associated macrophages have been involved in tumor progression and resistance to cancer treatment with immune checkpoint inhibitors (ICIs).
View Article and Find Full Text PDFUbiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting.
View Article and Find Full Text PDFTherapy of multiple sclerosis (MS) with disease-modifying agents such as natalizumab or fingolimod has been associated with the development of cutaneous melanoma. Here we briefly revise literature data and report of a case of a 48-year old woman who developed a melanoma and several atypical naevi after sub sequential treatment with natalizumab (1 year) and fingolimod (7 years). By immunohistochemistry we observed the presence of T cells and leukocyte infiltration as well as of vascular endothelial growth factor (VEGF)-A expression in the patient melanoma biopsy.
View Article and Find Full Text PDFThe anti‑vascular endothelial growth factor‑A (VEGF‑A) monoclonal antibody (mAb) bevacizumab is an FDA‑approved monotherapy for the treatment of recurrent glioblastoma (GB), a highly angiogenic and infiltrative tumour. However, bevacizumab does not increase overall survival and blockade of VEGF‑A/VEGF receptor (VEGFR)‑2 signal transduction is associated with severe adverse effects due to inhibition of physiological angiogenesis. Conversely, VEGFR‑1 does not play a relevant role in physiological angiogenesis in the adult.
View Article and Find Full Text PDFThe vascular endothelial growth factor (VEGF) family members, VEGF-A, placenta growth factor (PlGF), and to a lesser extent VEGF-B, play an essential role in tumor-associated angiogenesis, tissue infiltration, and metastasis formation. Although VEGF-A can activate both VEGFR-1 and VEGFR-2 membrane receptors, PlGF and VEGF-B exclusively interact with VEGFR-1. Differently from VEGFR-2, which is involved both in physiological and pathological angiogenesis, in the adult VEGFR-1 is required only for pathological angiogenesis.
View Article and Find Full Text PDF