Publications by authors named "Labosky P"

The discovery that extracellular RNAs (exRNA) can act as endocrine signalling molecules established a novel paradigm in intercellular communication. ExRNAs can be transported, both locally and systemically in virtually all body fluids. In association with an array of carrier vehicles of varying complexity, exRNA can alter target cell phenotype.

View Article and Find Full Text PDF

Chronic pain affects more than 50 million Americans. Treatments remain inadequate, in large part, because the pathophysiological mechanisms underlying the development of chronic pain remain poorly understood. Pain biomarkers could potentially identify and measure biological pathways and phenotypical expressions that are altered by pain, provide insight into biological treatment targets, and help identify at-risk patients who might benefit from early intervention.

View Article and Find Full Text PDF

Biomedical research training has undergone considerable change over the past several years. At its core, the goal of graduate and postdoctoral training is to provide individuals with the skills and knowledge to become outstanding scientists and expand knowledge through the scientific method. Historically, graduate school training has focused on preparation for academic positions.

View Article and Find Full Text PDF

Several reports have shown that doctoral and postdoctoral trainees in biomedical research pursue diverse careers that advance science meaningful to society. Several groups have proposed a three-tier career taxonomy to showcase these outcomes. This three-tier taxonomy will be a valuable resource for institutions committed to greater transparency in reporting outcomes, to not only be transparent in reporting their own institutional data but also to lend greater power to a central repository.

View Article and Find Full Text PDF

Early development is governed by the ability of pluripotent cells to retain the full range of developmental potential and respond accurately to developmental cues. This property is achieved in large part by the temporal and contextual regulation of gene expression by enhancers. Here, we evaluated regulation of enhancer activity during differentiation of embryonic stem to epiblast cells and uncovered the forkhead transcription factor FOXD3 as a major regulator of the developmental potential of both pluripotent states.

View Article and Find Full Text PDF

Recent national reports and commentaries on the current status and needs of the U.S. biomedical research workforce have highlighted the limited career development opportunities for predoctoral and postdoctoral trainees in academia, yet little attention is paid to preparation for career pathways outside of the traditional faculty path.

View Article and Find Full Text PDF

The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies,

View Article and Find Full Text PDF

Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation.

View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin.

View Article and Find Full Text PDF

Understanding gene regulatory networks controlling properties of pluripotent stem cells will facilitate development of stem cell-based therapies. The transcription factor Foxd3 is critical for maintenance of self-renewal, survival, and pluripotency in murine embryonic stem cells (ESCs). Using a conditional deletion of Foxd3 followed by gene expression analyses, we demonstrate that genes required for several developmental processes including embryonic organ development, epithelium development, and epithelial differentiation were misregulated in the absence of Foxd3.

View Article and Find Full Text PDF

The generation of transgenic mouse models has been a powerful technique for several decades and is still widely used. There have been many manuals and general reviews of this technology. This chapter is designed to be a "how-to" resource with detailed specifics.

View Article and Find Full Text PDF

Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progenitor-derived melanocytes are differentially restricted to the epaxial and hypaxial body domains, respectively.

View Article and Find Full Text PDF

Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown.

View Article and Find Full Text PDF

Skin-derived precursors (SKPs) are an attractive stem cell model for cell-based therapies. SKPs can be readily generated from embryonic and adult mice and adult humans, exhibit a high degree of multipotency, and have the potential to serve as a patient autologous stem cell. The advancement of these cells toward therapeutic use depends on the ability to control precisely the self-renewal and differentiation of SKPs.

View Article and Find Full Text PDF

The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone.

View Article and Find Full Text PDF

Formation of higher-order structure of nucleic acids (hairpins or loops, for example) may impact not only gene regulation, but also molecular biology techniques and approaches critical for design and production of vectors needed for genetic engineering approaches. In the course of designing vectors aimed to modify the murine Foxd3 locus through homologous recombination in embryonic stem cells, we discovered a 370 nucleotide segment of DNA resistant to polymerase read-through. In addition to sequencing and PCR disruptions, we were unable to use BAC recombineering strategies to exchange sequences within the Foxd3 locus.

View Article and Find Full Text PDF

The enteric nervous system (ENS) arises from the coordinated migration, expansion and differentiation of vagal and sacral neural crest progenitor cells. During development, vagal neural crest cells enter the foregut and migrate in a rostro-to-caudal direction, colonizing the entire gastrointestinal tract and generating the majority of the ENS. Sacral neural crest contributes to a subset of enteric ganglia in the hindgut, colonizing the colon in a caudal-to-rostral wave.

View Article and Find Full Text PDF

The spinal cord contains a diverse array of physiologically distinct interneuron cell types that subserve specialized roles in somatosensory perception and motor control. The mechanisms that generate these specialized interneuronal cell types from multipotential spinal progenitors are not known. In this study, we describe a temporally regulated transcriptional program that controls the differentiation of Renshaw cells (RCs), an anatomically and functionally discrete spinal interneuron subtype.

View Article and Find Full Text PDF

A complete molecular understanding of β-cell mass expansion will be useful for the improvement of therapies to treat diabetic patients. During normal periods of metabolic challenges, such as pregnancy, β-cells proliferate, or self-renew, to meet the new physiological demands. The transcription factor Forkhead box D3 (Foxd3) is required for maintenance and self-renewal of several diverse progenitor cell lineages, and Foxd3 is expressed in the pancreatic primordium beginning at 10.

View Article and Find Full Text PDF

The transcription factors Foxd3 and Pax3 are important early regulators of neural crest (NC) progenitor cell properties. Homozygous mutations of Pax3 or a homozygous NC-specific deletion of Foxd3 cause marked defects in most NC derivatives, but neither loss of both Foxd3 alleles nor loss of one Pax3 allele alone greatly affects overall development of cardiac NC derivatives. In contrast, compound mutant embryos homozygous for a NC-specific Foxd3 mutation and heterozygous for Pax3 have fully penetrant persistent truncus arteriosus, severe thymus hypoplasia, and midgestation lethality.

View Article and Find Full Text PDF

Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate.

View Article and Find Full Text PDF

Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass.

View Article and Find Full Text PDF

Objective: Conditional gene targeting has been extensively used for in vivo analysis of gene function in β-cell biology. The objective of this study was to examine whether mouse transgenic Cre lines, used to mediate β-cell- or pancreas-specific recombination, also drive Cre expression in the brain.

Research Design And Methods: Transgenic Cre lines driven by Ins1, Ins2, and Pdx1 promoters were bred to R26R reporter strains.

View Article and Find Full Text PDF

Modifications to the core histones are thought to contribute to ESC pluripotency by priming tissue-specific promoters and enhancers for later activation. However, it is unclear how these marks are targeted in ESCs and maintained during differentiation. Here, we show that the ESC factor Sox2 targets H3K4 methylation to monovalent and bivalent domains.

View Article and Find Full Text PDF