Importance: The brain enters distinct activation states to support differential cognitive and emotional processes, but little is known about how brain activation states differ in youths with clinical anxiety.
Objective: To characterize brain activation states during socioemotional processing (movie stimuli) and assess associations between state characteristics and movie features and anxiety symptoms.
Design, Setting, And Participants: The Healthy Brain Network is an ongoing cross-sectional study of individuals aged 5 to 21 years experiencing difficulties in school, of whom approximately 45% met criteria for a lifetime anxiety disorder diagnosis.
Premise: Restoration of seminatural field margins can elevate pollinator activity. However, how they support wild plant gene flow through interactions between pollinators and spatiotemporal gradients in floral resources remains largely unknown.
Methods: Using a farm-scale experiment, we tested how mating outcomes (expected heterozygosity and paternity correlation) of the wild, self-incompatible plant Cyanus segetum transplanted into field margins (sown wildflower or grass-legume strips) were affected by the abundance of different pollinator functional groups (defined by species traits).
The cerebral cortex comprises discrete cortical areas that form during development. Accurate area parcellation in neuroimaging studies enhances statistical power and comparability across studies. The formation of cortical areas is influenced by intrinsic embryonic patterning as well as extrinsic inputs, particularly through postnatal exposure.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
November 2024
Many psychiatric conditions have their roots in early development. Individual differences in prenatal brain function (which is influenced by a combination of genetic risk and the prenatal environment) likely interact with individual differences in postnatal experience, resulting in substantial variation in brain functional organization and development in infancy. Neuroimaging has been a powerful tool for understanding typical and atypical brain function and holds promise for uncovering the neurodevelopmental basis of psychiatric illness; however, its clinical utility has been relatively limited thus far.
View Article and Find Full Text PDFIntroduction: We investigate the role of osteopontin (OPN) in participants with Pre-symptomatic Alzheimer's disease (AD), mild cognitive impairment (MCI), and in AD brains.
Methods: Cerebrospinal fluid (CSF) OPN, AD, and synaptic biomarker levels were measured in 109 cognitively unimpaired (CU), parental-history positive Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease (PREVENT-AD) participants, and in 167 CU and 399 participants with MCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. OPN levels were examined as a function of amyloid beta (Aβ) and tau positivity.
We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early Tau pathology and synaptic degeneration in Alzheimer's disease.
View Article and Find Full Text PDFWe examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early tau pathology and synaptic degeneration in Alzheimer's disease.
View Article and Find Full Text PDFBackground: Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment.
View Article and Find Full Text PDFPurpose/background: Brexanolone is approved for postpartum depression (PPD) by the United States Food and Drug Administration. Brexanolone has outperformed placebo in clinical trials, but less is known about the efficacy in real-world patients with complex social and medical histories. Furthermore, the impact of brexanolone on large-scale brain systems such as changes in functional connectivity (FC) is unknown.
View Article and Find Full Text PDFStudy Objectives: Although short sleep could promote neurodegeneration, long sleep may be a marker of ongoing neurodegeneration, potentially as a result of neuroinflammation. The objective was to evaluate sleep patterns with age of expected Alzheimer's disease (AD) onset and neuroinflammation.
Methods: We tested 203 dementia-free participants (68.
The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that existing parcellations, including surface-based parcels derived from older samples as well as volume-based neonatal parcels, are a poor fit for neonatal surface data.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
February 2024
Introduction: Measuring day-to-day sleep variability might reveal unstable sleep-wake cycles reflecting neurodegenerative processes. We evaluated the association between Alzheimer's disease (AD) fluid biomarkers with day-to-day sleep variability.
Methods: In the PREVENT-AD cohort, 203 dementia-free participants (age: 68.
Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signalling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein in the CSF, IGFBP2.
View Article and Find Full Text PDFThe cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that adult- and older infant-derived parcels are a poor fit with neonatal data, emphasizing the need for neonatal-specific parcels.
View Article and Find Full Text PDFThe characterization of individual functional brain organization with Precision Functional Mapping has provided important insights in recent years in adults. However, little is known about the ontogeny of inter-individual differences in brain functional organization during human development. Precise characterization of systems organization during periods of high plasticity is likely to be essential for discoveries promoting lifelong health.
View Article and Find Full Text PDFThe balance of pollination competition and facilitation among co-flowering plants and abiotic resource availability can modify plant species and individual reproduction. Floral resource succession and spatial heterogeneity modulate plant-pollinator interactions across ecological scales (individual plant, local assemblage, and interaction network of agroecological infrastructure across the farm). Intraspecific variation in flowering phenology can modulate the precise level of spatio-temporal heterogeneity in floral resources, pollen donor density, and pollinator interactions that a plant individual is exposed to, thereby affecting reproduction.
View Article and Find Full Text PDFIntroduction: Electroconvulsive therapy (ECT) is an effective intervention for patients with major depressive disorder (MDD). Despite longstanding use, the underlying mechanisms of ECT are unknown, and there are no objective prognostic biomarkers that are routinely used for ECT response. Two electroencephalographic (EEG) markers, sleep slow waves and sleep spindles, could address these needs.
View Article and Find Full Text PDFObjective: Periods of low-amplitude electroencephalographic (EEG) signal (quiescence) are present during both anesthetic-induced burst suppression (BS) and postictal generalized electroencephalographic suppression (PGES). PGES following generalized seizures induced by electroconvulsive therapy (ECT) has been previously linked to antidepressant response. The commonality of quiescence during both BS and PGES motivated trials to recapitulate the antidepressant effects of ECT using high doses of anesthetics.
View Article and Find Full Text PDFBackground: The posterior dominant rhythm (PDR) was the first oscillatory pattern noted in the EEG. Evoked by wakeful eyelid closure, these oscillations dissipate over seconds during loss of arousal. The peak frequency of the PDR maintains stability over years, suggesting utility as a state biomarker in the surveillance of acute cognitive impairments.
View Article and Find Full Text PDFObjective: The objective of this study was to evaluate novel plasma p-tau231 and p-tau181, as well as Aβ and Aβ assays as indicators of tau and Aβ pathologies measured with positron emission tomography (PET), and their association with cognitive change, in cognitively unimpaired older adults.
Methods: In a cohort of 244 older adults at risk of Alzheimer's disease (AD) owing to a family history of AD dementia, we measured single molecule array (Simoa)-based plasma tau biomarkers (p-tau231 and p-tau181), Aβ and Aβ with immunoprecipitation mass spectrometry, and Simoa neurofilament light (NfL). A subset of 129 participants underwent amyloid-β ( F-NAV4694) and tau ( F-flortaucipir) PET assessments.
Background: In mouse models of amyloidosis, macrophage receptor 1 (MSR1) and neprilysin (NEP) have been shown to interact to reduce amyloid burden in the brain.
Objective: The purpose of this study is to analyze these two gene products in combination with apolipoproteins and Aβ1-42 in the cerebrospinal fluid (CSF) and plasma of individuals at different stages of Alzheimer's disease (AD), as well as in autopsied brain samples from ROSMAP (Religious Orders Study and Memory and Aging Project).
Methods: CSF/plasma levels of MSR1 and NEP were measured using the sensitive primer extension assay technology.
Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE.
View Article and Find Full Text PDF