This study examines mental health service providers who provided care to evacuees during the Israel-Hamas conflict. Utilizing a phenomenological qualitative method, the research delves into the psychological impact on the participants' lived experiences. The sample included 25 mental health providers (13 female, age range 28-63, mean 42.
View Article and Find Full Text PDFDepression has major consequences for the entire family, among them emotional distress, disrupted daily routine and social damage caused by negative stigmas. The aim of this study was to explore the retrospective experiences of young adults who lived with a sibling with depression while they were adolescents. The present study adopted a qualitative-phenomenological approach.
View Article and Find Full Text PDFBackground: Depression is a mental health condition that can have far-reaching consequences for the entire family, not just for the affected individual. Siblings are particularly vulnerable in that the unremitting stress and guilt at home can affect multiple aspects of their lives, including relationships, added responsibilities, and health. This pressure may affect siblings' own emotional well-being and academic success.
View Article and Find Full Text PDFThe molecular messenger nitric oxide (NO) not only serves a number of physiologic functions, but is also involved in the pathophysiology of neurodegeneration. It is produced by the nitric oxide synthase (NOS) isoenzymes. One of the many players regulating NOS activity is the Protein Inhibitor of NOS, PIN.
View Article and Find Full Text PDFRestor Neurol Neurosci
January 2000
Purpose: Exogenously applied BDNF has been shown to rescue rat retinal ganglion cells (RGCs) from axotomy-induced apoptotic death, presumably via activation of its high affinity receptor TrkB. Since both TrkB and BDNF are endogenously expressed in RGCs, auto- or para-crine neurotrophic loops in the retina may be involved. In the present study, we investigated whether expression levels of BDNF, TrkA, TrkB, TrkC and p75 protein in RGCs are specifically regulated following axonal lesion and during regeneration of optic fibres in the adult rat.
View Article and Find Full Text PDFThe neurotrophin brain-derived neurotrophic factor (BDNF) serves as a survival, mitogenic, and differentiation factor in both the developing and adult CNS and PNS. In an attempt to identify the molecular mechanisms underlying BDNF neuroprotection, we studied activation of two potentially neuroprotective signal transduction pathways by BDNF in a CNS trauma model. Transection of the optic nerve (ON) in the adult rat induces secondary death of retinal ganglion cells (RGCs).
View Article and Find Full Text PDFRecently we have shown that the majority of retinal ganglion cells (RGCs) dies via activation of caspase-3 after transection of the optic nerve (ON) in the adult rat. In the present study we investigated whether insulin-like growth factor-I (IGF-I), an important factor in retinal development, prevents secondary death of RGCs after axotomy. Moreover, we studied potential intracellular mechanisms of IGF-mediated neuroprotection in more detail.
View Article and Find Full Text PDFRestor Neurol Neurosci
January 2000
Purpose: Exogenously applied BDNF has been shown to rescue rat retinal ganglion cells (RGCs) from axotomy-induced apoptotic death, presumably via activation of its high affinity receptor TrkB. Since both TrkB and BDNF are endogenously expressed in RGCs, auto- or para-crine neurotrophic loops in the retina may be involved. In the present study, we investigated whether expression levels of BDNF, TrkA, TrkB, TrkC and p75 protein in RGCs are specifically regulated following axonal lesion and during regeneration of optic fibres in the adult rat.
View Article and Find Full Text PDFRecently, we have shown that inhibition of caspase-3-like caspases is the most effective treatment strategy to protect adult rat retinal ganglion cells from secondary death following optic nerve transection. In the present study, we localized active caspase-3 in axotomized retinal ganglion cells in vivo and demonstrated a co-localization of the active p20 fragment and TUNEL-staining in some of these cells. In line with this, we detected an enhanced cleavage and activity of caspase-3 protein in retinal tissue after lesion, while caspase-3 mRNA expression remained unchanged.
View Article and Find Full Text PDFMol Cell Neurosci
September 1998
The inability of injured axons to regenerate in the adult mammalian central nervous system is thought to be in part due to inhibitory molecules synthesized by oligodendrocytes and present in myelin. We describe the cloning of a cDNA encoding a novel neuronal protein, named NERPP-2C, which is distantly related to protein phosphatase 2C and plays a role in the inhibitory response pathway to myelin inhibitors. NERPP-2C is expressed in neuronal cell lines and in rat brain.
View Article and Find Full Text PDFThe majority of retinal ganglion cells (RGCs) degenerate and die after transection of the optic nerve (ON) in the adult rat. This secondary cell death can primarily be ascribed to apoptosis. Recent work strongly suggests a decisive role for a family of cysteine proteases, termed caspases, as mediators of neuronal apoptosis.
View Article and Find Full Text PDFA component of adult mammalian central nervous system (CNS) myelin causes collapse of neuronal growth cones and inhibits axonal growth, properties that may be responsible for the lack of regrowth of injured axons in the CNS. The molecules and detailed mechanism through which the inhibitory activity acts are not known. To study the cellular molecules mediating the response to this inhibitor, we have used an in vitro neurite growth inhibition assay to screen a panel of monoclonal antibodies raised against rat neuronal membrane proteins, for clones capable of blocking the response.
View Article and Find Full Text PDFIn Rhizobium meliloti, the presence of the C4-dicarboxylate transport protein DctA is required for symbiotic N2 fixation in alfalfa root nodules. Expression of dctA is inducible and is mediated by a sensor and activator gene pair encoded by dctB and dctD. In the presence of C4-dicarboxylates, the DCTB sensor protein is believed to phosphorylate and activate DCTD, which in turn activates transcription at the sigma 54-dependent dctA promoter.
View Article and Find Full Text PDFIn the N2-fixing alfalfa symbiont Rhizobium meliloti, the three sigma 54 (NTRA)-dependent positively acting regulatory proteins NIFA, NTRC, and DCTD are required for activation of promoters involved in N2 fixation (pnifHDKE and pfixABCX), nitrogen assimilation (pglnII), and C4-dicarboxylate transport (pdctA), respectively. Here, we describe an allele of ntrC which results in the constitutive activation of the above NTRC-, NIFA-, and DCTD-regulated promoters. The expression and activation of wild-type NTRC occur in response to nitrogen availability, whereas in cells carrying the ntrC283 allele, the NTRC283 protein appears constitutively active and is constitutively expressed.
View Article and Find Full Text PDFSymbiotic nitrogen fixation may be limited by the transport of C4 dicarboxylates into bacteroids in the nodule for use as a carbon and energy source. In an attempt to increase dicarboxylate transport, a plasmid was constructed in which the Rhizobium meliloti structural transport gene dctA was fused to a tryptophan operon promoter from Salmonella typhimurium, trpPO. This resulted in a functional dctA gene that was no longer under the control of the dctBD regulatory genes, but the recombinant plasmid was found to be unstable in R.
View Article and Find Full Text PDFA series of broad-host-range expression and lac fusion vectors, based on RSF1010 derivatives, was constructed. The expression vectors contain various promoters (pNm, plac, ptac and pS1) for expression of foreign genes. The efficiency of the promoters was determined in Escherichia coli, Rhizobium meliloti, Rhizobium leguminosarum and Pseudomonas putida by beta-galactosidase activity measurements.
View Article and Find Full Text PDF