Publications by authors named "Labeit D"

Article Synopsis
  • Chronic heart failure (CHF) leads to diaphragm muscle dysfunction, impacting the patient's quality of life and prognosis, prompting research into potential treatments.
  • In a study involving mice with CHF, a small-molecule inhibitor (ID#704946) targeting MuRF1 was tested against a control diet to see its effects on diaphragm health and function.
  • Results showed that while CHF caused diaphragm muscle atrophy and reduced function, the treatment with ID#704946 helped preserve muscle contractility and improve mitochondrial enzyme activity, although the exact mechanisms are still unclear.
View Article and Find Full Text PDF

Background: Muscle ring finger 1 (MuRF1) is a muscle-specific ubiquitin E3 ligase activated during clinical conditions associated with skeletal muscle wasting. Yet, there remains a paucity of therapeutic interventions that directly inhibit MuRF1 function, particularly in vivo. The current study, therefore, developed a novel compound targeting the central coiled coil domain of MuRF1 to inhibit muscle wasting in cardiac cachexia.

View Article and Find Full Text PDF

. Parvovirus B19 (B19V) is a common finding in endomyocardial biopsy specimens from myocarditis and dilated cardiomyopathy patients. However, current understanding of how B19V is contributing to cardiac damage is rather limited due to the lack of appropriate mice models.

View Article and Find Full Text PDF

Myasthenia gravis (MG) is an autoimmune disease caused by antibodies targeting the neuromuscular junction of skeletal muscles. Triple-seronegative MG (tSN-MG, without detectable AChR, MuSK and LRP4 antibodies), which accounts for ~10% of MG patients, presents a serious gap in MG diagnosis and complicates differential diagnosis of similar disorders. Several AChR antibody positive patients (AChR-MG) also have antibodies against titin, usually detected by ELISA.

View Article and Find Full Text PDF

The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic β2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei.

View Article and Find Full Text PDF

Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner.

View Article and Find Full Text PDF

Muscle atrophy is a process of muscle wasting induced under a series of catabolic stress conditions, such as denervation, disuse, cancer cachexia, heart and renal failure, AIDS, and aging. Neuromuscular junctions (NMJs), the synapses between motor neurons and muscle fibers undergo major changes in atrophying muscles, ranging from mild morphological alterations to complete disintegration. In this study, we hypothesized that remodeling of NMJs and muscle atrophy could be linked together.

View Article and Find Full Text PDF

MuRF1 is a member of the TRIM/RBCC superfamily, a gene family that encompasses a large variety of proteins, all sharing the conserved TRIM (Tripartite Motive) sequential array of RING, B-box, and coiled-coil domains. Within this family, MuRF1(also named TRIM63) is a specialized member that contributes to the development of muscle atrophy and sarcopenia. Here we studied MuRF1's role in muscle atrophy during muscle unloading induced by hindlimb suspension.

View Article and Find Full Text PDF

The B-box motif is the defining feature of the TRIM family of proteins, characterized by a RING finger-B-box-coiled coil tripartite fold. We have elucidated the crystal structure of B-box 2 (B2) from MuRF1, a TRIM protein that supports a wide variety of protein interactions in the sarcomere and regulates the trophic state of striated muscle tissue. MuRF1 B2 coordinates two zinc ions through a cross-brace alpha/beta-topology typical of members of the RING finger superfamily.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the ubiquitin ligase MuRF1 in muscle-wasting conditions like diabetes and starvation, focusing on its impact on carbohydrate metabolism in skeletal muscle.
  • MuRF1-TG mice, which over-express MuRF1 in skeletal muscle, show normal muscle weights and fertility but lower levels of critical glycolysis enzymes, suggesting MuRF1 may influence metabolic processes.
  • Results from glucose tolerance tests indicate that MuRF1 expression in muscle enhances insulin secretion and shifts glycogen synthesis from muscle to the liver, illustrating a connection between muscle and hepatic metabolism during metabolic stress.
View Article and Find Full Text PDF

p94/calpain 3 is a skeletal muscle-specific Ca(2+)-regulated cysteine protease (calpain), and genetic loss of p94 protease activity causes muscular dystrophy (calpainopathy). In addition, a small in-frame deletion in the N2A region of connectin/titin that impairs p94-connectin interaction causes a severe muscular dystrophy (mdm) in mice. Since p94 via its interaction with the N2A and M-line regions of connectin becomes part of the connectin filament system that serves as a molecular scaffold for the myofibril, it has been proposed that structural and functional integrity of the p94-connectin complex is essential for health and maintenance of myocytes.

View Article and Find Full Text PDF

Myofibril elasticity, critical to muscle function, is dictated by the intrasarcomeric filament titin, which acts as a molecular spring. To date, the molecular events underlying the mechanics of the folded titin chain remain largely unknown. We have elucidated the crystal structure of the 6-Ig fragment I65-I70 from the elastic I-band fraction of titin and validated its conformation in solution using small angle x-ray scattering.

View Article and Find Full Text PDF

The muscle-specific RING finger proteins MuRF1 and MuRF2 have been proposed to regulate protein degradation and gene expression in muscle tissues. We have tested the in vivo roles of MuRF1 and MuRF2 for muscle metabolism by using knockout (KO) mouse models. Single MuRF1 and MuRF2 KO mice are healthy and have normal muscles.

View Article and Find Full Text PDF

Titin forms an intrasarcomeric filament system in vertebrate striated muscle, which has elastic and signaling properties and is thereby central to mechanotransduction. Near its C-terminus and directly preceding a kinase domain, titin contains a conserved pattern of Ig and FnIII modules (Ig(A168)-Ig(A169)-FnIII(A170), hereby A168-A170) that recruits the E3 ubiquitin-ligase MuRF-1 to the filament. This interaction is thought to regulate myofibril turnover and the trophic state of muscle.

View Article and Find Full Text PDF

While the role of titin as a sarcomeric protein is well established, its potential functional role(s) in smooth muscles and non-muscle tissues are controversial. We used a titin exon array to search for which part(s) of the human titin transcriptional unit encompassing 363 exons is(are) expressed in non-striated muscle tissues. Expression profiling of adult smooth muscle tissues (aorta, bladder, carotid, stomach) identified alternatively spliced titin isoforms, encompassing 80 to about 100 exons.

View Article and Find Full Text PDF

The precise assembly of the highly organized filament systems found in muscle is critically important for its function. It has been hypothesized that nebulin, a giant filamentous protein extending along the entire length of the thin filament, provides a blueprint for muscle thin filament assembly. To test this hypothesis, we generated a KO mouse model to investigate nebulin functions in vivo.

View Article and Find Full Text PDF

p94/calpain 3 is a skeletal muscle-specific member of the Ca(2+)-regulated cytosolic cysteine protease family, the calpains. Defective p94 protease activity originating from gene mutations causes a muscular dystrophy called calpainopathy, indicating the indispensability of p94 for muscle survival. Because of the existence of the p94-specific regions IS1 and IS2, p94 undergoes very rapid and exhaustive autolysis.

View Article and Find Full Text PDF

Cardiac ankyrin repeat protein (CARP) and its two close homologs ankrd2 (Arpp) and DARP correspond to a conserved gene family of muscle ankyrin repeat proteins (MARPs). All three genes respond to a variety of stress/strain injury signals with their cytokine-like induction and can associate with the elastic region of titin/connectin. Recently, both CARP and ankrd2 were observed to be elevated in cardiac diseases as well as muscular dystrophies, implicating their joined signaling in muscle diseases.

View Article and Find Full Text PDF

The cellular function of the giant protein titin in striated muscle is a major focus of scientific attention. Particularly, its role in passive mechanics has been extensively investigated. In strong contrast, the structural details of this filament are very poorly understood.

View Article and Find Full Text PDF

We studied the effects of Ca2+ on titin (connectin)-based passive tension in skinned myocardium expressing either predominantly N2B titin (rat right ventricle, RRV) or predominantly N2BA titin (bovine left atrium, BLA). Actomyosin-based tension was abolished to undetectably low levels by selectively removing the thin filaments with a Ca2+-insensitive gelsolin fragment (FX-45). Myocardium was stretched in the presence and absence of Ca2+, and passive tension was measured.

View Article and Find Full Text PDF

The giant elastic protein titin contains an extensible segment that underlies the majority of physiological passive muscle stiffness. The extensible segment comprises mechanically distinct and serially-linked spring elements: the tandem Ig segments, the PEVK and the cardiac-specific N2B unique sequence. Under physiological conditions the tandem Ig segments are likely to largely consist of folded Ig domains whereas the N2B unique sequence and PEVK are largely unfolded and behave as wormlike chains with different persistence lengths.

View Article and Find Full Text PDF

Muscular dystrophy with myositis (mdm) is a recessive mouse mutation that is caused by a small deletion in the giant elastic muscle protein titin. Homozygous mdm/mdm mice develop a progressive muscular dystrophy, leading to death at approximately 2 months of age. We surveyed the transcriptomes of skeletal muscles from 24 day old homozygous mdm/mdm and +/+ wild-type mice, an age when MDM animals have normal passive and active tensions and sarcomeric structure.

View Article and Find Full Text PDF

alphaB-crystallin, a major component of the vertebrate lens, is a chaperone belonging to the family of small heat shock proteins. These proteins form oligomers that bind to partially unfolded substrates and prevent denaturation. alphaB-crystallin in cardiac muscle binds to myofibrils under conditions of ischemia, and previous work has shown that the protein binds to titin in the I-band of cardiac fibers (Golenhofen, N.

View Article and Find Full Text PDF

Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied recombinant PEVK molecules containing the two conserved elements: approximately 28-residue PEVK repeats and E-rich motifs.

View Article and Find Full Text PDF