Sickle cell disease (SCD) is the most common inherited red blood cell disorder in the United States, affecting 70 000 to 100 000 Americans and causing a range of serious medical complications. Although the cause of SCD was established decades ago, existing therapies have varied effectiveness and side effects, and development of novel therapies has been slow. The limitations of existing treatment options highlight the need for new therapies that are aligned with the desires of the community.
View Article and Find Full Text PDFIn September 2020, a detailed report on was published. The report offers a translational pathway for the limited approval of germline editing under limited circumstances and assuming various criteria have been met. In this perspective, some three dozen experts from the fields of genome editing, medicine, bioethics, law, and related fields offer their candid reactions to the National Academies/Royal Society report, highlighting areas of support, omissions, disagreements, and priorities moving forward.
View Article and Find Full Text PDFHere, we established the Drosophila Giant Fiber neurons (GF) as a novel model to study axonal trafficking of L1-type Cell Adhesion Molecules (CAM) Neuroglian (Nrg) in the adult CNS using live imaging. L1-type CAMs are well known for their importance in nervous system development and we previously demonstrated a role for Nrg in GF synapse formation. However, in the adult they have also been implicated in synaptic plasticity and regeneration.
View Article and Find Full Text PDFPTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2) and has been shown to play a role in axon guidance of embryonic motoneurons as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons, two interneurons in the central nervous system (CNS) that control the escape response of the fly. Our studies revealed that PTP69D has a function in synaptic terminal growth in the CNS.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases are ubiquitously expressed proteins that charge tRNAs with their cognate amino acids. By ensuring the fidelity of protein synthesis, these enzymes are essential for the viability of every cell. Yet, mutations in six tRNA synthetases specifically affect the peripheral nerves and cause Charcot-Marie-Tooth (CMT) disease.
View Article and Find Full Text PDF