Publications by authors named "LaRonda Morford"

Background: Olaratumab (Lartruvo™) is a recombinant human IgG1 monoclonal antibody that specifically binds PDGFRα. In order to support use of Lartruvo in pediatric patients, a definitive juvenile animal study in neonatal mice was conducted with a human anti-mouse PDGFRα antibody analog of olaratumab (LSN3338786).

Methods: A pilot study was used to set doses for the definitive juvenile mouse study.

View Article and Find Full Text PDF

Recommendations on study designs that adequately evaluate the in-life effects leading to juvenile bone toxicity, the various imaging modalities that can aid interpretation of the bone effects, biomarkers that may be useful, and regulatory issues were presented in this 2020 ACT symposium. The pathologies encountered in past studies were briefly mentioned. The first speaker covered study design and the numbers of juveniles that may be necessary to power the evaluation.

View Article and Find Full Text PDF

With an increasing prevalence of obesity, there is a need for new therapies to improve body weight management and metabolic health. Multireceptor agonists in development may provide approaches to fulfill this unmet medical need. LY3437943 is a novel triple agonist peptide at the glucagon receptor (GCGR), glucose-dependent insulinotropic polypeptide receptor (GIPR), and glucagon-like peptide-1 receptor (GLP-1R).

View Article and Find Full Text PDF

Increased research to improve preclinical models to inform the development of therapeutics for neonatal diseases is an area of great need. This article reviews five common neonatal diseases - bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, perinatal hypoxic-ischemic encephalopathy and neonatal sepsis - and the available in vivo, in vitro and in silico preclinical models for studying these diseases. Better understanding of the strengths and weaknesses of specialized neonatal disease models will help to improve their utility, may add to the understanding of the mode of action and efficacy of a therapeutic, and/or may improve the understanding of the disease pathology to aid in identification of new therapeutic targets.

View Article and Find Full Text PDF

This review presents a European Federation of Pharmaceutical Industries and Association/PreClinical Development Expert Group (EFPIA-PDEG) topic group consensus on a data-driven approach to harmonized contraception recommendations for clinical trial protocols and product labeling. There is no international agreement in pharmaceutical clinical trial protocols or product labeling on when/if female and/or male contraception is warranted and for how long after the last dose. This absence of consensus has resulted in different recommendations among regions.

View Article and Find Full Text PDF

Toxicity studies in pregnant animals are not always necessary for assessing the human risk of developmental toxicity of biopharmaceuticals. The growing experience and information on target biology and molecule-specific pharmacokinetics present a powerful approach to accurately anticipate effects of target engagement by biopharmaceuticals using a weight of evidence approach. The weight of evidence assessment should include all available data including target biology, pharmacokinetics, class effects, genetically modified animals, human mutations, and a thorough literature review.

View Article and Find Full Text PDF

Background: Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing?

Methods: A workshop was held under the auspices of the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute to consider how we might design developmental toxicity testing if we started over with 21st century knowledge and techniques (revolution). We first consider what changes to the current protocols might be recommended to make them more predictive for human risk (evolution).

View Article and Find Full Text PDF

The study of developmental neurotoxicity (DNT) continues to be an important component of safety evaluation of candidate therapeutic agents and of industrial and environmental chemicals. Developmental neurotoxicity is considered to be an adverse change in the central and/or peripheral nervous system during development of an organism and has been primarily evaluated by studying functional outcomes, such as changes in behavior, neuropathology, neurochemistry, and/or neurophysiology. Neurobehavioral evaluations are a component of a wide range of toxicology studies in laboratory animal models, whereas neurochemistry and neurophysiology are less commonly employed.

View Article and Find Full Text PDF

Rationale: Whether selective serotonin reuptake inhibitors (SSRIs) exposure during adolescent brain development causes lasting effects remains unresolved.

Objective: Assess the effects of fluoxetine and paroxetine 60 days after adolescent exposure compared with when on-drug.

Methods: Male Sprague-Dawley littermates (41 litters) were gavaged on postnatal days 33-53 with fluoxetine (3 or 10 mg/kg/day), paroxetine (3, 10 or, 17 mg/kg/day), or water; half were tested while on-drug (21 litters) and half after 60 days off-drug (20 litters).

View Article and Find Full Text PDF

Evaluation of pharmaceutical agents in children is now conducted earlier in the drug development process. An important consideration for this pediatric use is how to assess and support its safety. This article is a collaborative effort of industry toxicologists to review strategies, challenges, and current practice regarding preclinical safety evaluations supporting pediatric drug development with biopharmaceuticals.

View Article and Find Full Text PDF

The effects of the dopamine D1 receptor antagonist R(+)-SCH-23390 and D2 receptor antagonist S(-)-eticlopride on d-methamphetamine-induced striatal monoamine reductions 72 h after treatment were investigated in relation to changes in body temperature. Rats were administered four 10-mg/kg doses of d-methamphetamine or saline with a 2-h interval between treatments; 0.5 mg/kg eticlopride or SCH-23390 was administered 15 min before each methamphetamine or saline injection.

View Article and Find Full Text PDF

We have previously shown that P11-20 treatment with d-methamphetamine (MA) induces impaired spatial navigation in the Morris water maze (MWM), whereas P1-10 treatment does not. Little is known about the long-term behavioral consequences of MA during juvenile, adolescent, and early adult brain development. In dose-response experiments, we tested successive 10-day intervals of exposure to MA in rats (P21-30, P31-40, P41-50, and P51-60; four doses per day).

View Article and Find Full Text PDF

Children differ from adults both physiologically and behaviorally. These differences can affect how and when exposures to xenobiotics occur and the resulting responses. Testing using animal models may be used to predict whether children display novel toxicities not observed in adults or whether children are more or less sensitive to known toxicities.

View Article and Find Full Text PDF

In previous studies, we have shown that P11-20 treatment with D-methamphetamine (MA) (10 mg/kg x 4/day at 2-h intervals) induces impairments in spatial learning and memory in the Morris water maze after the offspring reach adulthood. Using a split-litter, multiple dose, design (0, 5, 10, and 15 mg/kg MA administered s.c.

View Article and Find Full Text PDF

Previously, we have shown that rats administered MDMA from postnatal (P) days 11-20 had reductions in body weight during the period of treatment and as adults they had deficits in sequential and spatial learning and memory. In the present study, to control for weight reductions, we used litters with double the number of offspring to induce growth restriction comparable to that of standard size litters treated with MDMA. Litters were treated twice daily from P11 to 20 with vehicle or MDMA (20 mg/kg) or only weighed.

View Article and Find Full Text PDF

Fenfluramine (FEN) is an amphetamine derivative with anorectic properties similar to amphetamine, but without the stimulatory or abuse potential. Administration of FEN produces an immediate release of serotonin as well as inhibits reuptake; ultimately FEN produces a decrease in serotonin stores in the central nervous system. We have previously shown that the administration of FEN to rats results in increased adrenal cortical hormones under resting conditions, without simultaneous elevations in adrenocorticotropin hormone (ACTH).

View Article and Find Full Text PDF