Publications by authors named "LaCroix-Fralish M"

The artemin-GFRα3 signaling pathway has been implicated in various painful conditions including migraine, cold allodynia, hyperalgesia, inflammatory bone pain, and mouse knees contain GFRα3-immunoreactive nerve endings. We developed high affinity mouse (REGN1967) and human (REGN5069) GFRα3-blocking monoclonal antibodies and, following evaluations in mouse models of chronic joint pain (osteoarthritic-like and inflammatory), conducted a first-in-human phase 1 pharmacokinetics (PK) and safety trial of REGN5069 (NCT03645746) in healthy volunteers, and a phase 2 randomized placebo-controlled efficacy and safety trial of REGN5069 (NCT03956550) in patients with knee osteoarthritis (OA) pain. In three commonly used mouse models of chronic joint pain (destabilization of the medial meniscus, intra-articular monoiodoacetate, or Complete Freund's Adjuvant), REGN1967 and REGN5069 attenuated evoked behaviors including tactile allodynia and thermal hyperalgesia without discernably impacting joint pathology or inflammation, prompting us to further evaluate REGN5069 in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Developing reliable tools to assess factors like frailty and health-related quality of life (HRQL) is vital for understanding aging in dogs and can also inform research on human aging.
  • In a study involving 451 adult dogs, researchers validated the Canine Frailty Index (CFI) and VetMetrica HRQL tools, showing that older dogs (7 years and up) exhibit higher frailty and lower HRQL compared to younger dogs (2-6 years).
  • The study found that body size didn't significantly affect frailty or HRQL scores, but larger, older dogs had a quicker decline in owner-reported activity and comfort levels, highlighting the need for these tools in advancing dog healthspan research and gerotherapeutics for
View Article and Find Full Text PDF

Aging is the single most important cause of disease, disability, and death in adult dogs. Contrary to the common view of aging as a mysterious and inevitable natural event, it is more usefully understood as a set of complex but comprehensible biological processes that are highly conserved across species. Although the phenotypic expression of these processes is variable, there are consistent patterns both within and between species.

View Article and Find Full Text PDF

Bulk RNA sequencing provides the opportunity to understand biology at the whole transcriptome level without the prohibitive cost of single cell profiling. Advances in spatial transcriptomics enable to dissect tissue organization and function by genome-wide gene expressions. However, the readout of both technologies is the overall gene expression across potentially many cell types without directly providing the information of cell type constitution.

View Article and Find Full Text PDF

We recently observed a reliable phenotypic difference in the inflammatory pain sensitivity of a congenic mouse strain compared to its background strain. By constructing and testing subcongenic strains combined with gene-expression assays, we provide evidence for the candidacy of the Yy1 gene - encoding the ubiquitously expressed and multifunctional Yin Yang 1 transcription factor - as responsible. To confirm this hypothesis, we used a Cre/lox strategy to produce mutant mice in which Yy1 expression was ablated in Nav 1.

View Article and Find Full Text PDF

The innate immune system is increasingly appreciated to play an important role in the mediation of chronic pain, and one molecule implicated in this process is the Toll-like receptor 4 (TLR4). Here, using pharmacological and genetic manipulations, we found that activating TLR4 in the spinal cord, with the agonist lipopolysaccharide (LPS), causes robust mechanical allodynia but only in male mice. Spinal LPS had no pain-producing effect in female mice.

View Article and Find Full Text PDF

Quantitative trait locus mapping of chemical/inflammatory pain in the mouse identified the Avpr1a gene, which encodes the vasopressin-1A receptor (V1AR), as being responsible for strain-dependent pain sensitivity to formalin and capsaicin. A genetic association study in humans revealed the influence of a single nucleotide polymorphism (rs10877969) in AVPR1A on capsaicin pain levels, but only in male subjects reporting stress at the time of testing. The analgesic efficacy of the vasopressin analog desmopressin revealed a similar interaction between the drug and acute stress, as desmopressin inhibition of capsaicin pain was only observed in nonstressed subjects.

View Article and Find Full Text PDF

Existing microarray gene expression profiling studies of tonic/chronic pain were subjected to meta-analysis to identify genes found to be regulated by these pain states in multiple, independent experiments. Twenty studies published from 2002 to 2008 were identified, describing the statistically significant regulation of 2254 genes. Of those, a total of 79 genes were found to be statistically significant "hits" in 4 or more independent microarray experiments, corresponding to a conservative P<0.

View Article and Find Full Text PDF

Facial expression is widely used as a measure of pain in infants; whether nonhuman animals display such pain expressions has never been systematically assessed. We developed the mouse grimace scale (MGS), a standardized behavioral coding system with high accuracy and reliability; assays involving noxious stimuli of moderate duration are accompanied by facial expressions of pain. This measure of spontaneously emitted pain may provide insight into the subjective pain experience of mice.

View Article and Find Full Text PDF

It is widely appreciated that there is significant inter-individual variability in pain sensitivity, yet only a handful of contributing genetic variants have been identified. Computational genetic mapping and quantitative trait locus analysis suggested that variation within the gene coding for the beta3 subunit of the Na+,K+-ATPase pump (Atp1b3) contributes to inter-strain differences in the early phase formalin pain behavior. Significant strain differences in Atp1b3 gene expression, beta3 protein expression, and biophysical properties of the Na+,K+ pump in dorsal root ganglia neurons from resistant (A/J) and sensitive (C57BL/6J) mouse strains supported the genetic prediction.

View Article and Find Full Text PDF

Interindividual variability in pain sensitivity and the response to analgesic manipulations remains a considerable clinical challenge as well as an area of intense scientific investigation. Techniques in this field have matured rapidly so that much relevant data have emerged only in the past few years. Our increasing understanding of the genetic mediation of these biological phenomena have nonetheless revealed their surprising complexity.

View Article and Find Full Text PDF

An increasing amount of evidence indicates that there are significant sex differences in clinical and experimental pain sensitivity in men and women. While it is now clear that the endogenous sex steroids are involved in mediating these sex differences, the cellular and molecular mechanisms that underlie their effects on nociceptive sensitivity remain elusive. Recent studies have shown that sex steroids are potent regulators of gene expression in glial cells, particularly astrocytes.

View Article and Find Full Text PDF

We have previously shown that the atypical methylxanthine, propentofylline, reduces mechanical allodynia after peripheral nerve transection in a rodent model of neuropathy. In the present study, we sought to determine whether propentofylline-induced glial modulation alters spinal glutamate transporters, glutamate transporter-1 (GLT-1) and glutamate-aspartate transporter (GLAST) in vivo, which may contribute to reduced behavioral hypersensitivity after nerve injury. In order to specifically examine the expression of the spinal glutamate transporters, a novel line of double transgenic GLT-1-enhanced green fluorescent protein (eGFP)/GLAST-Discosoma Red (DsRed) promoter mice was used.

View Article and Find Full Text PDF

Glial-neuronal interactions are crucial processes in neuromodulation and synaptic plasticity. The neuregulin 1 family of growth and differentiation factors have been implicated as bidirectional signaling molecules that are involved in mediating some of these interactions. We have shown previously that neuregulin 1 expression is regulated by the gonadal hormones progesterone and 17beta-estradiol in the CNS, which might represent a novel, indirect mechanism of the neuromodulatory actions of these gonadal hormones.

View Article and Find Full Text PDF

The transgenic knockout mouse is one of the most important tools of modern biology, and commonly employed by pain researchers to examine the function of genes of interest. Over 400 papers, at a current rate of >60 papers per year, have been published to date describing a statistically significant behavioral pain "phenotype" resulting from the null mutation of a single gene. The standard literature review format is incapable of providing a sufficiently broad and up-to-date overview of the field.

View Article and Find Full Text PDF

Increasing evidence points to a role for spinal neuroimmune dysregulation (glial cell activation and cytokine expression) in the pathogenesis of chronic pain. Suppression of astrocytic and microglial activation with the methylxanthine derivative, propentofylline, pre-emptively attenuates the development of nerve injury-induced allodynia. Currently, we investigated the ability of systemic propentofylline to reverse existing, long-term allodynia after nerve injury-a clinically relevant paradigm.

View Article and Find Full Text PDF

Sex differences in the magnitude of response to thermal and tactile stimuli have been demonstrated in both clinical and animal studies. Females typically display lower threshold responses to painful stimuli as compared to males. We have previously observed sexually dimorphic expression of the growth factor, neuregulin 1 (NRG1) following L5 nerve root ligation (LR) in male and female rats.

View Article and Find Full Text PDF

Considerable evidence indicates that there are sex-related differences in clinical and experimental pain sensitivity. In the present study, we sought to determine what genes were expressed in the spinal cord in a sexually dimorphic manner. We first analyzed global gene expression in the lumbar spinal cord of uninjured male and female rats using the Affymetrix RAE230A GeneChip platform in order to identify genes that are selectively expressed in male and female rats at a basal level.

View Article and Find Full Text PDF

Increasing evidence points to a role for spinal neuroimmune dysregulation (glial cell activation and cytokine expression) in the pathogenesis of chronic pain. Suppression of astrocytic and microglial activation with the methylxanthine derivative, propentofylline, pre-emptively attenuates the development of nerve injury-induced allodynia. Currently, we investigated the ability of systemic propentofylline to reverse existing, long-term allodynia after nerve injury--a clinically relevant paradigm.

View Article and Find Full Text PDF

Reactive astrocytes display decreased glutamate transporters, such as GLT-1, and as a result synaptic glutamate clearance is impaired. In addition, these activated astrocytes are immunocompetent and release algesic mediators that can sensitize neurons in the spinal cord. Currently, we evaluated the effect of propentofylline (PPF), an experimental antiallodynic agent, on the phenotype and glutamate transporter expression of astrocytes.

View Article and Find Full Text PDF

Background: Neuropathic pain and radicular low back pain both have a major impact on human health worldwide. Microarray gene analysis on central nervous system tissues holds great promise for discovering novel targets for persistent pain modulation.

Methods: Rat models of lumbar radiculopathy (L5 nerve root ligation) and neuropathy (L5 spinal nerve transection) were used for these studies.

View Article and Find Full Text PDF

Sex differences in the magnitude of response to thermal and tactile stimuli have been demonstrated in both clinical and animal studies. Female rats typically display lower thresholds to painful stimuli and display more robust responses following nerve injury as compared with males. There is a body of evidence implicating the sex hormones in mediating this sex difference.

View Article and Find Full Text PDF

Study Design: This study examined the differences in tactile hypersensitivity across 6 different strains of male mice, and between male and female rats of 3 different strains in a rodent model of low back pain associated with lumbar radiculopathy.

Objective: We investigated the possibility that differences in tactile allodynia following the same nerve root injury are affected by genotype and sex in rodents.

Summary Of Background Data: Low back pain associated with radiculopathy affects countless people throughout the world, encompassing a wide range of individual pain susceptibility.

View Article and Find Full Text PDF