Publications by authors named "LUCKEY C"

One of the most surprising and important findings of the first human landings on the Moon was the discovery of a very fine layer of lunar dust covering the entire surface of Moon along with the negative impacts of this dust on the well-being and operational effectiveness of the astronauts, their equipment, and instrumentation. The United States is now planning for human missions to Mars, a planet where dust can also be expected to be ubiquitous for many or most landing sites. For these missions, the design and operations of key hardware systems must take this dust into account, especially when related to crew health and safety.

View Article and Find Full Text PDF

The lymph node (LN) performs essential roles in immunosurveillance throughout the body. Developing in vitro models of this key tissue is of great importance to enhancing physiological relevance in immunoengineering. The LN consists of stromal populations and immune cells, which are highly organized and bathed in constant interstitial flow.

View Article and Find Full Text PDF
Article Synopsis
  • The administration of anti-RhD immunoglobulin (Ig) has significantly reduced maternal alloimmunization, but new findings suggest that IgG can induce both antibody-mediated immune suppression (AMIS) and immune enhancement (AMIE) depending on its subclass.
  • Recent research indicates that the mechanisms of RBC alloimmunization are complex and require the IFN-α/-β receptor (IFNAR), while AMIE operates independently of IFNAR and is enhanced by the complement protein C3.
  • The study reveals that RBC clearance and C3 deposition occur before AMIE, involving CD4+ T cells and marginal zone B cells, with no significant rise in germinal center B cells, marking a shift in understanding RBC
View Article and Find Full Text PDF

On-chip 3D culture systems that incorporate immune cells such as lymphocytes and stromal cells are needed to model immune organs in engineered systems such as organs-on-chip. Photocrosslinking is a useful tool for creating such immune-competent hydrogel cultures with spatial cell organization. However, loss of viability and motility in photocrosslinked gels can limit its utility, especially when working with fragile primary cells.

View Article and Find Full Text PDF

Antibodies against fetal red blood cell (RBC) antigens can cause hemolytic disease of the fetus and newborn (HDFN). Reductions in HDFN due to anti-RhD antibodies have been achieved through use of Rh immune globulin (RhIg), a polyclonal antibody preparation that causes antibody-mediated immunosuppression (AMIS), thereby preventing maternal immune responses against fetal RBCs. Despite the success of RhIg, it is only effective against 1 alloantigen.

View Article and Find Full Text PDF

Background: Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, although it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation.

View Article and Find Full Text PDF

Bubbles are a common cause of microfluidic malfunction, as they can perturb the fluid flow within the micro-sized features of a device. Since gas bubbles form easily within warm cell culture reagents, degassing is often necessary for biomicrofluidic systems. However, fabrication of a microscale degasser that can be used modularly with pre-existing chips may be cumbersome or challenging, especially for labs not equipped for traditional microfabrication, and current commercial options can be expensive.

View Article and Find Full Text PDF

Background: Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, though it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation.

View Article and Find Full Text PDF

Introduction: The impact of blood storage on red blood cell (RBC) alloimmunization remains controversial, with some studies suggesting enhancement of RBC-induced alloantibody production and others failing to observe any impact of storage on alloantibody formation. Since evaluation of storage on RBC alloimmunization in patients has examined antibody formation against a broad range of alloantigens, it remains possible that different clinical outcomes reflect a variable impact of storage on alloimmunization to specific antigens.

Methods: RBCs expressing two distinct model antigens, HEL-OVA-Duffy (HOD) and KEL, separately or together (HOD × KEL), were stored for 0, 8, or 14 days, followed by detection of antigen levels prior to transfusion.

View Article and Find Full Text PDF
Article Synopsis
  • Antibodies against red blood cell alloantigens can lead to serious health issues for patients receiving transfusions, with some individuals showing high rates of alloimmunization while others do not.
  • Research indicates that CD4 T-cells, which typically recognize surface antigens on RBCs, can also respond to intracellular antigens, potentially affecting the immune response during transfusions.
  • In a study using mice, it was shown that prior exposure to intracellular RBC antigens can enhance the likelihood of forming antibodies against separate surface antigens from future transfusions, highlighting a new factor in understanding alloimmunization risks.
View Article and Find Full Text PDF

Background: Transgenic mice expressing RBC specific antigens are widely used in mechanistic studies of RBC alloimmunization. Existing RBC donor strains have random transgene integration, potentially disrupting host elements that can confound biological interpretation.

Study Design And Methods: Integration site and genomic alterations were characterized by both targeted locus amplification and congenic backcrossing in the five most commonly used RBC alloantigen donor strains (KEL-K2 , KEL-K2 , and KEL-K2 , and KEL-K1).

View Article and Find Full Text PDF

Background: Myelodysplastic syndrome (MDS) is a marrow failure disease. As patients often require chronic transfusion, many develop red blood cell (RBC) alloimmunization or immune-mediated platelet refractoriness. MDS represents a spectrum of diseases with specific categorizations and genetic abnormalities, and we set out to determine if these characteristics predispose patients to antibody formation.

View Article and Find Full Text PDF

Passive immunization with anti-D can prevent maternal alloimmunization to RhD thereby preventing hemolytic disease of the fetus and newborn. Unexpectedly, anti-D fails in some cases and some monoclonal anti-D preparations paradoxically enhances alloimmunization. The underlying mechanisms modulating humoral alloimmunization by anti-D are unknown.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is an inherited blood disorder characterized by sickled red blood cells (RBCs), which are more sensitive to haemolysis and can contribute to disease pathophysiology. Although treatment of SCD can include RBC transfusion, patients with SCD have high rates of alloimmunization. We hypothesized that RBCs from patients with SCD have functionally active mitochondria and can elicit a type 1 interferon response.

View Article and Find Full Text PDF

Micropatterning techniques for 3D cell cultures enable the recreation of tissue-level structures, but the combination of patterned hydrogels with organs-on-chip to generate organized 3D cultures under microfluidic perfusion remains challenging. To address this technological gap, we developed a user-friendly in-situ micropatterning protocol that integrates photolithography of crosslinkable, cell-laden hydrogels with a simple microfluidic housing, and tested the impact of crosslinking chemistry on stability and spatial resolution. Working with gelatin functionalized with photo-crosslinkable moieties, we found that inclusion of cells at high densities (≥ 10/mL) did not impede thiol-norbornene gelation, but decreased the storage moduli of methacryloyl hydrogels.

View Article and Find Full Text PDF

Background: Alloimmunization can be a significant barrier to red blood cell (RBC) transfusion. While alloantigen matching protocols hold promise in reducing alloantibody formation, transfusion-dependent patients can still experience RBC alloimmunization and associated complications even when matching protocols are employed. As a result, complementary strategies capable of actively preventing alloantibody formation following alloantigen exposure are warranted.

View Article and Find Full Text PDF

Background: The detection of physiologically relevant protein isoforms encoded by the human genome is critical to biomedicine. Mass spectrometry (MS)-based proteomics is the preeminent method for protein detection, but isoform-resolved proteomic analysis relies on accurate reference databases that match the sample; neither a subset nor a superset database is ideal. Long-read RNA sequencing (e.

View Article and Find Full Text PDF
Article Synopsis
  • RBC transfusion therapy is crucial for treating anemia, but it can lead to complications like the development of non-ABO alloantibodies due to unclear mechanisms.
  • Research indicates that storing mouse RBCs increases their ability to trigger immune responses, particularly through activation of splenic dendritic cells (DCs).
  • Findings show that the activation of DCs and the resulting antibody response require the MyD88 adapter molecule in TLR signaling, rather than TRIF, highlighting specific pathways for detecting transfused RBCs and initiating immune responses.
View Article and Find Full Text PDF

Complement impacts innate and adaptive immunity. Using a model in which the human KEL glycoprotein is expressed on murine red blood cells (RBCs), we have shown that polyclonal immunoprophylaxis (KELIg) prevents alloimmunization to transfused RBCs when a recipient is in their baseline state of heath but with immunoprophylaxis failure occurring in the presence of a viral-like stimulus. As complement can be detected on antibody coated KEL RBCs following transfusion, we hypothesized that recipient complement synergizes with viral-like inflammation to reduce immunoprophylaxis efficacy.

View Article and Find Full Text PDF

Background: Despite the significant adverse clinical consequences of RBC alloimmunization, our understanding of the signals that induce immune responses to transfused RBCs remains incomplete. Though RBC storage has been shown to enhance alloimmunization in the hen egg lysozyme, ovalbumin, and human Duffy (HOD) RBC alloantigen mouse model, the molecular signals leading to immune activation in this system remain unclear. Given that the nonclassical major histocompatibility complex (MHC) Class I molecule CD1D can bind to multiple different lysophospholipids and direct immune activation, we hypothesized that storage of RBCs increases lysophospholipids known to bind CD1D, and further that recipient CD1D recognition of these altered lipids mediates storage-induced alloimmunization responses.

View Article and Find Full Text PDF

Red blood cells expressing alloantigens are well known to be capable of inducing robust humoral alloantibody responses both in transfusion and pregnancy. However, the majority of transfusion recipients and pregnant women never make alloantibodies, even after repeat exposure to foreign RBCs. More recently, RBCs have been used as a cellular therapeutic-very much like transfusion, engineered RBCs are highly immunogenic in some cases but not others.

View Article and Find Full Text PDF

Anemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supplementation, known to abrogate the erythroid iron restriction response, induces reassembly of microtubules and Golgi in iron deprived progenitors.

View Article and Find Full Text PDF

Polyclonal anti-D (Rh immune globulin [RhIg]) therapy has mitigated hemolytic disease of the newborn over the past half century, although breakthrough anti-D alloimmunization still occurs in some treated females. We hypothesized that antiviral responses may impact the efficacy of immunoprophylaxis therapy in a type 1 interferon (IFN)-dependent manner and tested this hypothesis in a murine model of KEL alloimmunization. Polyclonal anti-KEL immunoprophylaxis (KELIg) was administered to wild-type or knockout mice in the presence or absence of polyinosinic-polycytidilic acid (poly[I:C]), followed by the transfusion of murine red blood cells (RBCs) expressing the human KEL glycoprotein.

View Article and Find Full Text PDF

Background: Despite the clinical significance of red blood cell (RBC) alloantibodies, there are currently no laboratory tests available to predict which patients may be at risk of antibody formation after transfusion exposure. Given their phagocytic and inflammatory functions, we hypothesized that differences in circulating monocytes may play a role in alloimmunization.

Study Design And Methods: Forty-two adults with sickle cell disease (SCD) were recruited, with data extracted from the electronic medical record and peripheral blood analyzed by flow cytometry for total monocytes, monocyte subsets (CD14 high/CD16 low+ classical monocytes, CD14 high/CD16 high+ intermediate monocytes, and CD14 intermediate/CD16 high+ non-classical/inflammatory monocytes), and FcγR1 (CD64) expression.

View Article and Find Full Text PDF