Bone is the most frequent metastasis site for breast cancer. As well as dramatically increasing disease burden, bone metastases are also an indicator of poor prognosis. One of the main challenges in investigating bone metastasis in breast cancer is engineering in vitro models that replicate the features of in vivo bone environments.
View Article and Find Full Text PDFMultiple myeloma (MM) is an incurable B cell neoplasia characterized by the accumulation of tumor plasma cells within the bone marrow (BM). As a consequence, bone osteolytic lesions develop in 80% of patients and remain even after complete disease remission. We and others had demonstrated that BM-derived mesenchymal stromal cells (MSCs) are abnormal in MM and thus cannot be used for autologous treatment to repair bone damage.
View Article and Find Full Text PDFBackground And Study Aim: Advanced therapy medicinal products (ATMP) frequently lack of clinical data on efficacy to substantiate a future clinical use. This study aims to evaluate the efficacy to heal long bone delayed unions and non-unions, as secondary objective of the EudraCT 2011-005441-13 clinical trial, through clinical and radiological bone consolidation at 3, 6 and 12 months of follow-up, with subgroup analysis of affected bone, gender, tobacco use, and time since the original fracture.
Patients And Methods: Twenty-eight patients were recruited and surgically treated with autologous bone marrow derived mesenchymal stromal cells expanded under Good Manufacturing Practices, combined to bioceramics in the surgical room before implantation.
Human adipose-derived stem/stromal cells (hASCs) can differentiate into specialized cell types and thereby contribute to tissue regeneration. As such, hASCs have drawn increasing attention in cell therapy and regenerative medicine, not to mention the ease to isolate them from donors. Culture conditions are critical for expanding hASCs while maintaining optimal therapeutic capabilities.
View Article and Find Full Text PDFClinical-grade mesenchymal stromal cells (MSCs) can be expanded from bone marrow and adipose tissue to treat inflammatory diseases and degenerative disorders. However, the influence of their tissue of origin on their functional properties, including their immunosuppressive activity, remains unsolved. In this study, we produced paired bone marrow-derived mesenchymal stromal cell (BM-MSC) and adipose-derived stromal cell (ASC) batches from 14 healthy donors.
View Article and Find Full Text PDFThe proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity.
View Article and Find Full Text PDFCell Stem Cell
June 2018
Mesenchymal stromal cells (MSCs) have been the subject of clinical trials for more than a generation, and the outcomes of advanced clinical trials have fallen short of expectations raised by encouraging pre-clinical animal data in a wide array of disease models. In this Perspective, important biological and pharmacological disparities in pre-clinical research and human translational studies are highlighted, and analyses of clinical trial failures and recent successes provide a rational pathway to MSC regulatory approval and deployment for disorders with unmet medical needs.
View Article and Find Full Text PDFBackground: ORTHO-1 is a European, multicentric, first in human clinical trial to prove safety and feasibility after surgical implantation of commercially available biphasic calcium phosphate bioceramic granules associated during surgery with autologous mesenchymal stromal cells expanded from bone marrow (BM-hMSC) under good manufacturing practices, in patients with long bone pseudarthrosis.
Methods: Twenty-eight patients with femur, tibia or humerus diaphyseal or metaphyso-diaphyseal non-unions were recruited and surgically treated in France, Germany, Italy and Spain with 100 or 200 million BM-hMSC/mL associated with 5-10 cc of bioceramic granules. Patients were followed up during one year.
The possibility of using adipose tissue-derived stromal cells (ATSC) as alternatives to bone marrow-derived stromal cells (BMSC) for bone repair has garnered interest due to the accessibility, high cell yield, and rapid in vitro expansion of ATSC. For clinical relevance, their bone forming potential in comparison to BMSC must be proven. Distinct differences between ATSC and BMSC have been observed in vitro and comparison of osteogenic potential in vivo is not clear to date.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ) and MSCs, with CD54 playing a central role.
View Article and Find Full Text PDFMesenchymal stem (stromal) cells (MSCs) are being investigated for treating degenerative and inflammatory disorders because of their reparative and immunomodulatory properties. Intricate mechanisms relate cell death processes with immune responses, which have implications for degenerative and inflammatory conditions. We review the therapeutic value of MSCs in terms of preventing regulated cell death (RCD).
View Article and Find Full Text PDFAdipose-derived stem cells (ADSCs) have led to growing interest in cell-based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation.
View Article and Find Full Text PDFOwing to their immunosuppressive properties, mesenchymal stromal cells (MSCs) obtained from bone marrow (BM-MSCs) or adipose tissue (ASCs) are considered a promising tool for cell therapy. However, important issues should be considered to ensure the reproducible production of efficient and safe clinical-grade MSCs. In particular, high expansion rate, associated with progressive senescence, was recently proposed as one of the parameters that could alter MSC functionality.
View Article and Find Full Text PDFAdipose-derived stromal cells (ASCs) are adult multipotent cells increasingly used for cell therapy due to their differentiation potential, their paracrine effect and their convenience. ASCs are currently selected from stromal vascular fractions (SVFs) of adipose tissue and expanded in 2D flasks following good manufacturing practices. This process is limited in surface area, labour-intensive and expensive, especially for autologous applications requiring selection and expansion steps for every patient.
View Article and Find Full Text PDFBackground Aims: Using innovative tools derived from social network analysis, the aims of this study were (i) to decipher the spatial and temporal structure of the research centers network dedicated to the therapeutic uses of mesenchymal stromal cells (MSCs) and (ii) to measure the influence of fields of applications, cellular sources and industry funding on network topography.
Methods: From each trial using MSCs reported on ClinicalTrials.gov, all research centers were extracted.
Background: The use of stromal vascular fraction and adipose-derived stromal cells in tissue regeneration is now being increasingly investigated, and studies have demonstrated that adipose-derived stromal cells present differentiation and immunomodulatory capacities. The development of a rapid, inexpensive, and enzyme-free technique to isolate adipose-derived stromal cell-enriched stromal vascular fraction is a major goal for stem cell therapy. Therefore, the authors compared innovative mechanical procedures to the gold standard technique, collagenase digestion.
View Article and Find Full Text PDFThis chapter describes a method for GMP-compliant expansion of human mesenchymal stromal/stem cells (hMSC) from bone marrow aspirates, using the Quantum(®) Cell Expansion System from Terumo BCT. The Quantum system is a functionally closed, automated hollow fiber bioreactor system designed to reproducibly grow cells in either GMP or research laboratory environments. The chapter includes protocols for preparation of media, setup of the Quantum system, coating of the hollow fiber bioreactor, as well as loading, feeding, and harvesting of cells.
View Article and Find Full Text PDFUnlabelled: : Osteoarthritis (OA) is the most widespread musculoskeletal disorder in adults. It leads to cartilage damage associated with subchondral bone changes and synovial inflammation, causing pain and disability. The present study aimed at evaluating the safety of a dose-escalation protocol of intra-articular injected adipose-derived stromal cells (ASCs) in patients with knee OA, as well as clinical efficacy as secondary endpoint.
View Article and Find Full Text PDFThe biological effects of indium-tin-oxide (ITO) are of considerable importance because workers exposed to indium compounds have been diagnosed with interstitial lung disease or pulmonary alveolar proteinosis; however, the pathophysiology of these diseases is undefined. Here, mice intraperitoneally inoculated with ITO-nanoparticles (ITO-NPs) resulted in peritonitis dependent in NLRP3 inflammasome, with neutrophils recruitment and interleukin-1β (IL-1β) production. Withal peritoneal macrophages exposed ex vivo to ITO-NPs caused IL-1β secretion and cytolysis.
View Article and Find Full Text PDFBackground: An efficient strategy for programming dendritic cells (DCs) for cancer immunotherapy is the optimization of their maturation so that they can efficiently stimulate cancer-specific T cell responses. Interleukin (IL)-4 has appeared as an essential cytokine, widely used in vitro with granulocyte macrophage-colony stimulating factor (GM-CSF) to differentiate monocytes into immature DCs (iDC) and to prevent macrophage formation. Conflicting data have been published regarding the effect of IL-4 on functional DC maturation.
View Article and Find Full Text PDF