The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI).
View Article and Find Full Text PDFLand-cover change often shifts the distribution of biomass in animal communities. However, the effects of land-cover changes on functional diversity remain poorly understood for many organisms and ecosystems, particularly, for floodplains. We hypothesize that the biomass distribution of fish functional diversity in floodplains is associated with land cover, which would imply that fish traits affect behavioral and/or demographic responses to gradients of land cover.
View Article and Find Full Text PDFSurface water dynamics play an important role in water, energy and carbon cycles of the Amazon Basin. A macro-scale inundation scheme was integrated with a surface-water transport model and the extended model was applied in this vast basin. We addressed the challenges of improving basin-wide geomorphological parameters and river flow representation for large-scale applications.
View Article and Find Full Text PDFTerrestrial ecosystems in the humid tropics play a potentially important but presently ambiguous role in the global carbon cycle. Whereas global estimates of atmospheric CO2 exchange indicate that the tropics are near equilibrium or are a source with respect to carbon, ground-based estimates indicate that the amount of carbon that is being absorbed by mature rainforests is similar to or greater than that being released by tropical deforestation (about 1.6 Gt C yr-1).
View Article and Find Full Text PDFMeasurements of water levels in the main channels of rivers, upland tributaries and floodplain lakes are necessary for understanding flooding hazards, methane production, sediment transport and nutrient exchange. But most remote river basins have only a few gauging stations and these tend to be restricted to large river channels. Although radar remote sensing techniques using interferometric phase measurements have the potential to greatly improve spatial sampling, the phase is temporally incoherent over open water and has therefore not been used to determine water levels.
View Article and Find Full Text PDF