We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion-photon couplings above 10-13 Ge V-1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.
View Article and Find Full Text PDFWe report the first result of a direct search for a cosmic axion background (CaB)-a relativistic background of axions that is not dark matter-performed with the axion haloscope, the Axion Dark Matter eXperiment (ADMX). Conventional haloscope analyses search for a signal with a narrow bandwidth, as predicted for dark matter, whereas the CaB will be broad. We introduce a novel analysis strategy, which searches for a CaB induced daily modulation in the power measured by the haloscope.
View Article and Find Full Text PDFWe report the results from a haloscope search for axion dark matter in the 3.3-4.2 μeV mass range.
View Article and Find Full Text PDFAxion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66-3.1 μeV mass range with Dine-Fischler-Srednicki-Zhitnisky sensitivity [Du et al.
View Article and Find Full Text PDFThis Letter reports on a cavity haloscope search for dark matter axions in the Galactic halo in the mass range 2.81-3.31 μeV.
View Article and Find Full Text PDFThe μeV axion is a well-motivated extension to the standard model. The Axion Dark Matter eXperiment (ADMX) collaboration seeks to discover this particle by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. In this Letter, we report results from a pathfinder experiment, the ADMX "Sidecar," which is designed to pave the way for future, higher mass, searches.
View Article and Find Full Text PDFThis Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 μeV.
View Article and Find Full Text PDFIt has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer.
View Article and Find Full Text PDFIn the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe.
View Article and Find Full Text PDFHidden U(1) gauge symmetries are common to many extensions of the standard model proposed to explain dark matter. The hidden gauge vector bosons of such extensions may mix kinetically with standard model photons, providing a means for electromagnetic power to pass through conducting barriers. The axion dark matter experiment detector was used to search for hidden vector bosons originating in an emitter cavity driven with microwave power.
View Article and Find Full Text PDFScalar fields with a "chameleon" property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling βγ excluding values between 2×10(9) and 5×10(14) for effective chameleon masses between 1.
View Article and Find Full Text PDFAxions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.
View Article and Find Full Text PDFPurpose: In older adults detrusor overactivity (DO) is almost as common in continent individuals as in those with urge incontinence (UUI). Thus, UUI likely reflects the contribution of additional factors. We postulated that of functionally independent individuals in whom transient causes were excluded those in whom DO was accompanied by UUI would be more likely to have smaller functional bladder capacity, less warning and less ability to avert urine loss in the face of DO.
View Article and Find Full Text PDFTheoretical arguments predict that the distribution of cold dark matter in spiral galaxies has peaks in velocity space associated with nonthermalized flows of dark matter particles. We searched for the corresponding peaks in the spectrum of microwave photons from axion to photon conversion in a cavity detector for dark matter axions. We found none and place limits on the density of any local flow of axions as a function of the flow velocity dispersion over the axion mass range 1.
View Article and Find Full Text PDFSpinal cord injury (SCI) involves the loss of neurons and glia due to initial mechanical and secondary biochemical mechanisms. Treatment with the sodium channel blocker tetrodotoxin (TTX) reduces acute white matter pathology and increases both axon density and hindlimb function chronically at 6 weeks after injury. We investigated the cellular composition of residual white matter chronically to determine whether TTX also has a significant effect on the numbers and types of cells present.
View Article and Find Full Text PDFFocal injection of the sodium channel blocker tetrodotoxin (TTX) into the injury site at either 5 or 15 min after a standardized thoracic contusion spinal cord injury (SCI) reduces white matter pathology and loss of axons in the first 24 hr after injury. Focal injection of TTX at 15 min after SCI also reduces chronic white matter loss and hindlimb functional deficits. We have now tested the hypothesis that the reduction in chronic deficits with TTX treatment is associated with long-term preservation of axons after SCI and compared both acute (24 hr) and chronic (6 weeks) effects of TTX administered at 15 min prior to and 5 min or 4 hr after SCI.
View Article and Find Full Text PDFAlterations in the expression of ionotropic glutamate receptors (GluR) contribute to neuronal loss after brain ischemia and epilepsy. In order to determine whether altered expression of GluR subunits might contribute to cell loss after spinal cord injury (SCI), we performed a time course study of subunit mRNA expression using quantitative in situ hybridization. Expression was studied in ventral horn motor neurons (VMN) and glia in adjacent ventral white matter at 15 min and 4, 8, and 24 h after SCI in tissue sections 4 mm rostral and caudal to the injury epicenter.
View Article and Find Full Text PDFThe secondary loss of neurons and glia over the first 24 h after spinal cord injury (SCI) contributes to the permanent functional deficits that are the unfortunate consequence of SCI. The progression of this acute secondary cell death in specific neuronal and glial populations has not previously been investigated in a quantitative manner. We used a well-characterized model of SCI to analyze the loss of ventral motoneurons (VMN) and ventral funicular astrocytes and oligodendrocytes at 15 min and 4, 8, and 24 h after an incomplete midthoracic contusion injury in the rat.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2001
An in vitro investigation was undertaken to study the roles of Na+ and Cl- in mammalian spinal cord (SC) neuron deterioration and death after injury involving physical disruption of the plasma membrane. Individual SC neurons in monolayer cultures were subjected to UV laser microbeam transection of a primary dendrite. Neurons lesioned in modified ionic environments (MIEs) where 50%-75% of the NaCl was replaced with sucrose had higher survival (65%-75%) than neurons lesioned in medium with normal (125 mM) NaCl (28%; p < 0.
View Article and Find Full Text PDFFocal microinjection of tetrodotoxin (TTX), a potent voltage-gated sodium channel blocker, reduces neurological deficits and tissue loss after spinal cord injury (SCI). Significant sparing of white matter (WM) is seen at 8 weeks after injury and is correlated to a reduction in functional deficits. To determine whether TTX exerts an acute effect on WM pathology, Sprague Dawley rats were subjected to a standardized weight-drop contusion at T8 (10 gm x 2.
View Article and Find Full Text PDFFocal microinjection of 2, 3-dihyro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), an antagonist of the AMPA/kainate subclass of glutamate receptors, reduces neurological deficits and tissue loss after spinal cord injury. Dose-dependent sparing of white matter is seen at 1 month after injury that is correlated to the dose-related reduction in chronic functional deficits. To determine whether NBQX exerts an acute effect on white matter pathology, female, adult Spague Dawley rats were subjected to a standardized weight drop contusion at T-8 (10 gm x 2.
View Article and Find Full Text PDFDendrites were transected from murine spinal neurons. Unlesioned neurons showed dark nucleolar and patchy cytoplasmic jun immunostaining. By 0.
View Article and Find Full Text PDFCiliary neurotrophic factor (CNTF) has been found to increase neuronal survival during development and after axotomy. The present study tested the effects of CNTF on lesioned and uninjured mouse spinal cord (SC) neurons grown in tissue culture. An initial toxicity study found that a 24-72 h exposure of SC cultures to concentrations of CNTF above 1000 ng/ml caused stress and death of unlesioned neurons and glia.
View Article and Find Full Text PDFThere is abundant evidence for large amounts of unseen matter in the universe. This dark matter, by its very nature, couples feebly to ordinary matter and is correspondingly difficult to detect. Nonetheless, several experiments are now underway with the sensitivity required to detect directly galactic halo dark matter through their interactions with matter and radiation.
View Article and Find Full Text PDF