The results of a combined grazing incidence wide-angle X-ray scattering (GIWAXS) and 4D scanning transmission microscopy (4D-STEM) analysis of the effects of thermal processing on poly(3[2-(2-methoxyethoxy)ethoxy]-methylthiophene-2,5-diyl) are reported, a conjugated semiconducting polymer used as the active layer in organic electrochemical transistor devices. GIWAXS provides a measure of overall crystallinity in the film, while 4D-STEM produces real-space maps of the morphology and orientation of individual crystallites along with their spatial extent and distribution. The sensitivity of the 4D-STEM detector allows for collection of electron diffraction patterns at each position in an image scan while limiting the imparted electron dose to below the damage threshold.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.
View Article and Find Full Text PDFIntroducing ethylene glycol (EG) side chains to a conjugated polymer backbone is a well-established synthetic strategy for designing organic mixed ion-electron conductors (OMIECs). However, the impact that film swelling has on mixed conduction properties has yet to be scoped, particularly for electron-transporting (n-type) OMIECs. Here, the authors investigate the effect of the length of branched EG chains on mixed charge transport of n-type OMIECs based on a naphthalene-1,4,5,8-tetracarboxylic-diimide-bithiophene backbone.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) are becoming increasingly ubiquitous in various applications at the interface with biological systems. However, their widespread use is hampered by the scarcity of electron-conducting (n-type) backbones and the poor performance and stability of the existing n-OECTs. Here, we introduce organic salts as a solution additive to improve the transduction capability, shelf life, and operational stability of n-OECTs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers.
View Article and Find Full Text PDFControlling the binding of functional organic molecules on quantum dot (QD) surfaces and the resulting ligand/QD interfacial structure determines the resulting organic-inorganic hybrid behavior. In this study, we vary the binding of tetracenedicarboxylate ligands bound to PbS QDs cast in thin films by performing solid-state ligand exchange of as-produced bound oleate ligands. We employ comprehensive Fourier-transform infrared (FTIR) analysis coupled with ultraviolet-visible (UV-vis) spectrophotometric measurements, transient absorption, and Density Functional Theory (DFT) simulations to study the QD/ligand surface structure and resulting optoelectronic properties.
View Article and Find Full Text PDFWe study the organic electrochemical transistor (OECT) performance of the ladder polymer poly(benzimidazobenzophenanthroline) (BBL) in an attempt to better understand how an apparently hydrophobic side-chain-free polymer is able to operate as an OECT with favorable redox kinetics in an aqueous environment. We examine two BBLs of different molecular masses from different sources. Regardless of molecular mass, both BBLs show significant film swelling during the initial reduction step.
View Article and Find Full Text PDFA model mixed-conducting polymer, blended with an amphiphilic block-copolymer, is shown to yield systems with drastically enhanced electro-chemical doping kinetics, leading to faster electrochemical transistors with a high transduction. Importantly, this approach is robust and reproducible, and should be readily adaptable to other mixed conductors without the need for exhaustive chemical modification.
View Article and Find Full Text PDFPrinted 2D materials, derived from solution-processed inks, offer scalable and cost-effective routes to mechanically flexible optoelectronics. With micrometer-scale control and broad processing latitude, aerosol-jet printing (AJP) is of particular interest for all-printed circuits and systems. Here, AJP is utilized to achieve ultrahigh-responsivity photodetectors consisting of well-aligned, percolating networks of semiconducting MoS nanosheets and graphene electrodes on flexible polyimide substrates.
View Article and Find Full Text PDFColloidal quantum dots (CQDs) are promising materials for infrared (IR) light detection due to their tunable bandgap and their solution processing; however, to date, the time response of CQD IR photodiodes is inferior to that provided by Si and InGaAs. It is reasoned that the high permittivity of II-VI CQDs leads to slow charge extraction due to screening and capacitance, whereas III-Vs-if their surface chemistry can be mastered-offer a low permittivity and thus increase potential for high-speed operation. In initial studies, it is found that the covalent character in indium arsenide (InAs) leads to imbalanced charge transport, the result of unpassivated surfaces, and uncontrolled heavy doping.
View Article and Find Full Text PDFOrganic mixed ionic electronic conductors (OMIECs) have the potential to enable diverse new technologies, ranging from biosensors to flexible energy storage devices and neuromorphic computing platforms. However, a study of these materials in their operating state, which convolves both passive and potential-driven solvent, cation, and anion ingress, is extremely difficult, inhibiting rational material design. In this report, we present a novel approach to the in situ studies of the electrochemical switching of a prototypical OMIEC based on oligoethylene glycol (oEG) substitution of semicrystalline regioregular polythiophene via grazing-incidence X-ray scattering.
View Article and Find Full Text PDFFreeform optics enable improved optical solutions but their fabrication usually requires complicated precision machining processes. We report on an approach for freeform shaping of optical surfaces via a stress-induced viscous deformation of glass plates. We studied the deformation of fused silica substrates covered by specifically laser patterned films of substoichiometric silicon oxide during annealing at about 1100 °C in an oxidizing ambient.
View Article and Find Full Text PDFThe use of polymer-polymer blends to tailor mechanical properties and improve electrical performance is becoming widespread in the field of printed electronics. Similarly, meniscus-guided coating can be used to tailor electrical properties through alignment of the semiconducting material. We report on a long-wavelength instability during blade coating of a semiconducting polymer/elastomer blend for organic transistor applications that results in significant variation of the semiconducting polymer nanofibril alignment across the instability period.
View Article and Find Full Text PDFPolymer chains are attached to nanoparticle surfaces for many purposes, including altering solubility, influencing aggregation, dispersion, and even tailoring immune responses in drug delivery. The most unique structural motif of polymer-grafted nanoparticles (PGNs) is the high-density region in the corona where polymer chains are stretched under significant confinement, but orientation of these chains has never been measured because conventional nanoscale-resolved measurements lack sensitivity to polymer orientation in amorphous regions. Here, we directly measure local chain orientation in polystyrene grafted gold nanoparticles using polarized resonant soft X-ray scattering (P-RSoXS).
View Article and Find Full Text PDFMagneto electroluminescence (MEL) is emerging as a powerful tool to study spin dynamics in organic light emitting diodes (OLEDs). The shape of the MEL response is typically used to draw qualitative inference on the dominant process (singlet fission or triplet fusion) in the device. In this study, we develop a quantitative model for MEL and apply it to devices based on Rubrene, and three solution processable anthradithiophene emitters.
View Article and Find Full Text PDFBottlebrush block copolymers (BBCPs) are intriguing architectural variations on linear BCPs with highly tunable structure. Confinement can have a significant impact on polymer assembly, giving rise to changes in morphology, assembly kinetics, and properties like the glass transition. Given that confinement leads to significant changes in the persistence length of bottlebrush homopolymers, it is reasonable to expect that BBCPs will see significant changes in their structure and periodicity relative to the bulk morphology.
View Article and Find Full Text PDFThe ever increasing library of materials systems developed for organic solar-cells, including highly promising non-fullerene acceptors and new, high-efficiency donor polymers, demands the development of methodologies that i) allow fast screening of a large number of donor:acceptor combinations prior to device fabrication and ii) permit rapid elucidation of how processing affects the final morphology/microstructure of the device active layers. Efficient, fast screening will ensure that important materials combinations are not missed; it will accelerate the technological development of this alternative solar-cell platform toward larger-area production; and it will permit understanding of the structural changes that may occur in the active layer over time. Using the relatively high-efficiency poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl)-2,2';5',2'';5'',2'''-quaterthiophen-5,5'''-diyl)] (PCE11):phenyl-C61-butyric acid-methyl-ester acceptor (PCBM) blend systems, it is demonstrated that by means of straight-forward thermal analysis, vapor-phase-infiltration imaging, and transient-absorption spectroscopy, various blend compositions and processing methodologies can be rapidly screened, information on promising combinations can be obtained, reliability issues with respect to reproducibility of thin-film formation can be identified, and insights into how processing aids, such as nucleating agents, affect structure formation, can be gained.
View Article and Find Full Text PDFSilicon suboxide (SiO, ≈ 1) is a substoichiometric silicon oxide with a large refractive index and optical absorption coefficient that oxidizes to silica (SiO) by annealing in air at ~1000 °C. We demonstrate that nanostructures with a groove period of 200-330 nm can be formed in air on a silicon suboxide film with 800 nm, 100 fs, and 10 Hz laser pulses at a fluence an order of magnitude lower than that needed for glass materials such as fused silica and borosilicate glass. Experimental results show that high-density electrons can be produced with low-fluence femtosecond laser pulses, and plasmonic near-fields are subsequently excited to create nanostructures on the surface because silicon suboxide has a larger optical absorption coefficient than glass.
View Article and Find Full Text PDFColloidal quantum dots (CQDs) are of interest in light of their solution-processing and bandgap tuning. Advances in the performance of CQD optoelectronic devices require fine control over the properties of each layer in the device materials stack. This is particularly challenging in the present best CQD solar cells, since these employ a p-type hole-transport layer (HTL) implemented using 1,2-ethanedithiol (EDT) ligand exchange on top of the CQD active layer.
View Article and Find Full Text PDFOrganic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems.
View Article and Find Full Text PDFElectrolysis offers an attractive route to upgrade greenhouse gases such as carbon dioxide (CO) to valuable fuels and feedstocks; however, productivity is often limited by gas diffusion through a liquid electrolyte to the surface of the catalyst. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport. The CIBH comprises a metal and a superfine ionomer layer with hydrophobic and hydrophilic functionalities that extend gas and ion transport from tens of nanometers to the micrometer scale.
View Article and Find Full Text PDFMetal oxide (MO) thin-film transistors (TFTs) are expected to enable low-cost flexible and printed electronics, given their excellent charge transport, low processing temperatures and solution processability. However, achieving adequate mobility when processed scalably at low temperatures compatible with plastic electronics is a challenge. Here, we explore process-structure-transport relationships in blade-coated indium oxide (InO) TFTs via both sol-gel and combustion chemistries.
View Article and Find Full Text PDFRoom temperature Time-Domain Terahertz (TDS) and Time-Resolved Terahertz (TRTS) spectroscopic methods are employed to measure carrier mobility and charge generation efficiency in thin-film semiconductor polymers. Interrogation of the dependence on excitation and probe polarizations yields insight into the underlying material properties that guide charge transport. We apply THz polarization anisotropy probes to analyze charge conduction in preparations of the copolymer PCDTPT, consisting of alternating cyclopenta-dithiophene (donor) and thiadiazolo-pyridine (acceptor) units.
View Article and Find Full Text PDF